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FOREWORD 

This document presents the results of a contract study (NAS3-23044) con- 

ducted for the National Aeronautics and Space Administration (NASA) by the 
General Electric Company, Aircraft Engine Business Group. The program was 

administered by the Advanced Technology Programs Department with K. Schuning 
serving as Program Manager. 

D.F. Sargisson. 

The Technical Manager assigned for the Study was 

The study was directed by NASA-Lewis Research Center and G.A. Kraft was 

the NASA Study Program Manager. 

A large range of technical subjects were addressed during the study period 
and a number of widely differing technical disciplines were involved. 

following is a list of the principal General Electric personnel who have made 

major contributions to this study. 

The 

For Tasks I through VI 

Engine Design 

Aero/Mechanical J. Ciokajlo/G. Smith 

Cost and Weight G. Smith 

Engine Cycle and Performance Analyses 

Cycle Definitions and J.E. Johnson/K. Steinmetz 

Performance Decks J. Morrow 

Gearbox Design 

Theory 
Mechanical Design 

Cost and Weight 

Heat Exchangers 

Lubrication 

*. 1 
ProDeller Performance 

R.J. Willis (AEBG, Lynn) 
C. Broman/C. Toraason 

C. Toraason/A. Ludwig 

R. Petsch 

D. Hester 

R.G. Giffin 
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Nacelle and Inlet Aerodynamics 

Inlet I>. Paul 

Exhaust and Nacelle Design A. Kuchar 

Configuration Analyses R. Petsch 

Aircraft Svnthesis and Performance Analvses 

Requirements W. Joy 
Aircraft Synthesis W. Joy 
Trade-offs/Performance R. Hines 

Installation Technology W. Joy/R. Petsch 

Acoustic Technology S. Lavin/P. Ho 

Engine Emissions J. Taylor 

It is also appropriate that General Electric acknowledges the advice and 
counsel of three principal aircraft companies, who have supported this study, 

particularly in the area of airplane performance methodology, weight esti- 

mating procedures, acoustic trade-off data for fuselage noise attenuation, 

nacelle placement and other installation criteria. These companies are: 

Lockheed California and Georgia 

Doug 1 as Long Beach 

Boe ing Seattle 

A number of Hamilton-Standard personnel have also contributed data for 

this study and their efforts are likewise acknowledged. 

For Tasks VI1 through IX 

Electric Machinery E. Richter/T. Miller, General Electric 

Fiberoptic Technology G. Carlson, GE, CRdD Center 

Traction Drives G. White/R. Anderson, TRI Inc. 
Propeller Mechanisms C . M .  Toraason, GE 

Corporate R&D Center 

P. Barnes, Hamilton-Standard 
M. Mayo, Hamilton-Standard 
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SUMMARY RESULTS AND CONCLUSIONS 



1.0 SUMMARY RESULTS AND CONCLUSIONS 

The Advanced Propfan and Engine Technology Definition Study (hereafter 

referred to.as APET, or the APET Study) forms a part of the technology base 
required to substantiate the performance benefits that have been predicted for 

airplane propulsion systems which include the estimated full-scale Hamilton 

Standard propfan performance characteristics. Several previous industry 

studies conducted for NASA support the position that the development of the 

propfan would provide a significant contribution to the continuing commercial 

airplane technology dominance, by the United States, of the International 

Market. However, the studies already reported have not covered specific air- 

plane engine and gearbox design characteristics (and related installation lay- 
out) that are required to produce, together with the propfan, the best perfor- 

mance consistent with acceptable noise characteristics. Therefore, the APET 

Study, sponsored by NASA Lewis, is an essential element in the realization of 

the full potential performance benefits that can occur from an optimum propfan 
propulsion system. 

This study contract initia.lly covered the six tasks that are listed below: 

APET Program Tasks 

Task I - Selection of Evaluation Procedures and Assumptions 

Task I1 - Engine Configuration and Cycle Evaluation 

Task I11 - Propulsion System Integration 

Task IV - EngineIAircraft Evaluation 

Task V - Advanced Prop-Fan Engine Technology (APET) Plan 

Task VI - Reporting Requirements 

Task I provided the rationale for the conduct of the study. Task I1 
evaluated a candidate set of turbofan and turboshaft engines correctly sized 
for the missions defined in Task I, and selected one turbofan engine and two 
turboshaft engines that were then carried into the later study tasks; Task I11 

provided installation factors for the selected engines and produced Preliminary 

Design Layouts of engines, gearboxes, nacelles and sub-systems integrated with 
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the aircraft wing; Task IV evaluated the airplane performance, operating costs 
and acoustic signatures while carrying out the specified missions, Task V 
produced a set of recommendations and plans for the technology development of 
key components identified in this study; Task VI covered the necessary report- 

ing, which includes this document. 

A range of cruise speeds between Mach 0.70 and 0.80 was examined for the 
selected missions and six point-design airplanes were synthesized and "flown" 
on the computer to obtain a matrix of performance results. 

missions were also run to determine quantitatively the value of the technology 

assumptions on both fuel burn and cost. Acoustic and emission signatures 

were also estimated and compared against existing rules and those that may be 

in force in the next decade. 

Some off-design 

The results and conclusions from this study are positive. High cruise 

speed turboprop powered airplanes will, when examined with consistent propul- 

sion technology relative to turbofan engines, exhibit superior fuel burn and 

operating cost indices while meeting all the requisite regulations for acous- 

tic and emission signatures. Many aspects of the study and its results have 

direct Military relevance. These aspects can now be explored with some con- 
fidence, using the propulsion systems designed for APET. 

A s  a result of the above 6 tasks, NASA decided to enlarge the APET 

study by the addition of 3 more tasks. These were: 

Task VI1 - The Preliminary Design of a gearbox to be selected from the 
candidates already identified. 

Task VI11 - The Conceptual Design of an advanced electromechanical 
pitch change mechanism which integrates with the propfan and the gearbox of 
Task VII. 

Task IX - Reporting Requirements. 

4 



The primary objective of Task V I 1  was to identify the technologies which 

require support for an advanced gearbox to drive the propfan. 

for application was selected as the early 1990's and NASA required that the 

"advanced" gearbox to be directly compared with a gearbox using state-of-the- 

art technologies in gears, bearings, housings, lubrication and lubricant 

choices, system integration methods, costs and weights. This task also 
required that the "advanced" gearbox to be compatibly designed with regard to 

the Pitch Change Mechanism being conceptually designed in Task V I I I .  

The time period 

Both offset and concentric gearboxes were preliminarily designed. 

offset gearbox is not reported here because its design was undertaken by the 

Westland Helicopter Company in England at no cost to the contract. The con- 

centric gearbox is a reprtable item and has been included. 

The 

It is noteworthy that the offset design made by Westland to General Elec- 
tric ground rules was a significant advance over any contemporary offset gear- 

box in terms of low parts count and thus greatly enhanced reliability. The 

advance was made possible by substituting "conformal" gear technology for cur- 
rent "involute" gear technology. 

Westland on "conformal" gears is unique to the western world and has been 

developed over a period of some 15 years. 
transmission have both military and commercial application and over 300 Westland 

"Lynx" helicopters are in world-wide service. 

The technology data base available to 

Conformal gear sets in a helicopter 

The concentric gearbox which was preliminarily designed also included 

advancements of significance. Higher temperature gearsets and lubrication were 

used in conjunction with a modulated flow oil system. 
components such as the oil tank and oil-to-air heat exchanger were integrated 

into the gearbox housing design, saving weight and increasing reliability in 

A l s o ,  the main system 

the process. 

ture which comprises local castings welded to sheet-metal structures using 

advanced manufacturing techniques. 

The housing itself was proposed as a fabricated titanium struc- 

Task VI11 had as its primary objective the design of a radically different 

Earlier work by General Electric had defined the propfan PCM for the propfan. 
PCM to be an essential technology item requiring intense effort. The history 
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of hydromechanical systems in propeller PCM's may seem to be adequate for cur- 
rent applications but the propfan raises many questions as to the desirability 

of proceeding down a hydromechanical path. 

(CTM) of the scimitar shaped propfan blade combined with its relatively high 
rotational speed gives rise to actuator forces that are an order of magnitude 
greater than conventional, unswept, blades. Also, the control of the total 

propulsion system is based on the use of a Full Authority Digital Electronic 

Control (FADEC) and there are some obvious merits in having electronic signal- 

ling interface directly with electronic components rather than using electro- 

hydraulic servo valves. 

The Centrifugal Twisting Moment 

General Electric used the resources of the Corporate Research and Develop- 

ment Center t o  assist in the definition of advanced electromechanical com- 

ponents and the conceptual design of an all fiberoptic signal and control sys- 

tem that crosses the stationary-to-rotating boundary (gearbox to propfan) via 

an uniquely designed optical slipring with low optical loss .  It should be 
emphasized that the system concepts being reported herein are radially dif- 

ferent from any previous propeller control system, and they are attempting to 

ensure that the propfan, when fully developed, will be supported by a PCM with 
improved reliability and integrity (system safety) compared with current 
propellers. 
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An important element 

is the Advanced Turboprop 

2.0 INTRODUCTION 

of NASA's Aircraft Energy Efficiency Program (ACEE) 

Project (ATP). This project is being directed and 

administered by the NASA Lewis Research Center. 

In parallel to the ATP, NASA Lewis has contracted for the Advanced Prop- 
fan Engine Technology definition studies (hereafter called APET) with three 
principal US propulsion companies. 

The 

0 

0 

objectives of the APET definition study were to: 

Identify candidate engine and drive systems which, when coupled 
with an advanced propfan, will improve the energy efficiency of 
future U.S. commercial aircraft so that substantial fuel savings 
can be realized and permit U.S. built commercial aircraft and 
engines to retain their dominant place in the world aircraft 
market . 
Assist NASA in formulating a plan for a follow-on hardware effort 
that will provide the key technology required for U.S. engine manu- 
facturers to develop the candidate engines and drive systems which 
are critical to the viability of a propfan propulsion system. 

As part of the ATP a new concept of propeller rotor is being progres- 

sively evaluated through both theoretical and empirical efforts. This rotor, 

now being developed by Hamilton-Standard under contract to NASA, is generally 

referred to as a "Propfan". Typically, in a single row actuator disk it will 
employ eight or ten blades. Each of the blades incorporates advanced tech- 

nology geometry for improving aerodynamic (thrust and efficiency) performance 
at high cruise Mach numbers (in the order of M = 0.70 to 0.80) and additional 
geometric refinements to reduce rotor noise generation. 
advanced technology in its structure to reduce weight significantly compared 

with an all-metal, old technology, propeller blade. Previous studies have 

indicated that a propfan propulsion system, flying at an equivalent cruise 
Mach number to the current turbofan powered airplanes, can reduce fuel con- 

sumption by more than fifteen percent when compared with a turbofan propulsion 
system using equivalent core engine (gas-generator) technology. These studies 

The propfan also uses 
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The scope of t he  f i r s t  6 Tasks of the  APET s t u d i e s  r equ i r ed  c o n s i s t e n t  

comparisons between a i r p l a n e s ,  designed f o r  equiva len t  commercial ope ra t ions ,  

employing turbofan and turboprop propuls ion  systems. These comparisons are 

p ro jec t ed  i n t o  t h e  technology l e v e l s  r e a l i z a b l e  dur ing  t h e  e a r l y  p a r t  of the  

next  decade. 

The d e f i n i t i o n  of t he  turbofan  a i r p l a n e ,  u s ing  an e x i s t i n g  d a t a  base  i s  

considered s t ra ight forward .  

based and i s  discussed below. 

The d e f i n i t i o n  of the  turboprop i s  much less w e l l  

It has  been over twenty years  s i n c e  i n d u s t r y  designed o r  developed com- 

merc ia l  turboprop a i r c r a f t  and engines  f o r  use by t h e  major t runk  a i r l i n e s .  

The c r u i s e  speed of these  a i r c r a f t  w a s  i n  t h e  Mach 0.5 t o  0.6 range,  with Mach 

number-never-exceed (Mm) va lues  of  around 0.65. 

gene ra l ,  were not r e l a t e d  t o  t h e  propuls ion  systems themselves,  bu t  were l i m i t -  

ing  f a c t o r s  f o r  the a i r c r a f t  aerodynamic (wing) and s t r u c t u r a l  design.  

aga in  i n  genera l  terms, t h e s e  des igns  c a l l e d  f o r  a balance between t akeof f  per- 

formance and r e l a t e d  c r i t e r i a  such as f i e l d  l eng th ,  second-segment climb with 

one engine inopera t ive  ( O E I )  and t h e  c r u i s e  a l t i t u d e  power a v a i l a b l e .  

ma jo r i ty  of  t he  l a r g e r  a i r p l a n e s  were 4-engined, whereas the  APET s t u d i e s  were 

d i r e c t e d  towards short-to-medium haul  twin engined a i r c r a f t .  

The Mach r e s t r i c t i o n s ,  i n  

Also,  

The 

Large,  twin turboprop a i r c r a f t  which have been produced f o r  t h e  commer- 

c i a l  o r  m i l i t a r y  market are l i s t e d  i n  Table  2-1. I n  t h e  Western World, t h e  

"Transal l"  wi th  a t akeoff  g r o s s  weight (TOGW) of over  112,000 pounds is t he  

heavy weight leader  with engines  of  over  6,000 s h a f t  horsepower (SHP) each. 

Table 2-1. Twin-Engined Turboprop Airp lanes .  

~~~ 

(GE) APET 

Consortium Transall 

Breguet Atlantique 

Lockheed L-400 

Aeritalia 6.222 

Convair 580 

Antonov AN-26 

Fokker F27 

Design Role 

Military Transport 

ASW 

100 PAX 

Military Transport 

48 PAX 

Military Transport 

40-50 PAX 

10 

TOGW-LB 

130,000 

112,435 

98,105 

84 , 000 

58,400 

57,000 

53,000 

SHP Required 

2 x 10,000 
2 x 14,000 

2 x 6,100 

2 x 6,100 

2 x 4,662 

2 x 3,400 

2 x 3,025 

2 x 2,820 

2 x 2,230 45,000 

Comment s 

M = 0 . 1  cruise 
M 0.8 

M 0.5 to 0.6 

M = 0.5 to 0.6 

Lockhecd proposed 
twin of basic 
Hercules 

M 0.5 

M 1.0.4 to 0.45 

Also cornmecia1 versions 

M = 0.4 to 0.45 



Aircraft maximum rangelpayload design point has a definite impact on air- 
plane size and weight, and installed propulsion thrust requirements. General 

Electric has recently completed an economic survey of 70 major airlines world- 

wide, with particular emphasis on the route structures and equipment being used 

for stage lengths equal to and below 1000 miles. As a result, the APET base- 

line airplane was defined for a 1000 nautical miles maximum payload/range point 

for this study. 

The significance of the material being reported lies mainly in the con- 

sistency of the direct comparisons between turbofan and turboprop commercial 

aircraft designed with identical ground rules. Also noteworthy are the contri- 

butions offered by modern gearbox and PCM technology, nacelle concepts and 

their aerodynamic characteristics, cycle considerations for advanced turboshaft 

engines, propfan selection criteria, acoustic and emission estimates. 

The scope of Tasks VI1 and VIII in this study demanded more detailed 
engineering judgement. 
the level of a Preliminary Design where design loads, gear and bearing details, 

housing design criteria and installation integration were all taken by design 

layouts to the stage where accurate weights and costs could be generated. 

Also equally important were the exercises involving maintainability and reli- 
ability and the impacts thereon of various options in modularity. Task VIII 
is much more radical and introduces the possibility that the propfan PCM could 

well be an autonomous electromechanical system under the control of a frequency 

modulated digital signal having its origin in the propulsion FADEC and its 

terminal in an electronic control module rotating, with the propfan, at the 

forward end of the propfan structural hub. 

Task VI1 refined a gearbox from the earlier Tasks to 

Finally, it is believed that the recommendations and the technology 
development plans that are being proposed will provide NASA with a well con- 

structed roadmap for high horsepower, high cruise speed, turboprop propulsion 

systems. 
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3.0 PROGRAM OVERVIEW 

3.1 STUDY PROCEDURES AND ASSUMPTIONS 

The APET c o n t r a c t  c a l l e d  f o r  t h e  submission of a document t h a t ,  s u b j e c t  

t o  t h e  NASA Program Manager's approval,  de f ined  a l l  t h e  ground r u l e s  and 

methods t h a t  were t o  be used throughout t h e  t e c h n i c a l  e f f o r t s  t h a t  are repor ted  

he re .  Th i s  document covered t h e  fol lowing major t o p i c s .  

3.1.1 Fuel  P r i c e  Forecas t  

A s  is  d iscussed  la te r  i n  Sec t ion  4.1.3, f u e l  p r i c e s  f o r e c a s t  f o r  t h e  mid- 

1990's  t i m e  per iod  are based on p ro jec t ions  from a number of sources  t h a t  

included Government Agencies, O i l  Indus t ry  Analys ts ,  and economic f o r e c a s t s  

t h a t  are generated i n t e r n a l l y  by t h e  General E l e c t r i c  Company. 

t h a t  t h e  f u e l  p r i c e  t o  be used i n  the  economics assessments would be f ixed  a t  

$1.50 p e r  g a l l o n ,  p lus  or minus 50k. 

NASA/GE agreed 

3.1.2 Direct Operat ing Cost (DOC) Method 

Three DOC methods were analyzed. They were ( 1 )  NASA method contained i n  

Reference 30, ( 2 )  t h e  Eurac Method contained i n  Reference 31 - Common DOC 

Method f o r  Short/Medium Range Aircraf t ,  and (3)  t h e  ATA Method updated by 

Boeing i n  t h e i r  p r e s e n t a t i o n  Reference 32. 

similar r e s u l t s  and wi th  NASA's agreement, General E l e c t r i c  s e l e c t e d  Method 

Number 3. 

r epor t ed  i n  t h i s  s tudy.  

A l l  t h r e e  methods gave ve ry  

Table  3.1-1 shows the  assumptions made f o r  t h e  DOC c a l c u l a t i o n s  

3.1.3 Environmental Cons t r a in t s  

Both emission and acous t i c  r egu la t ions  now i n  f o r c e  and those  expected by 

t h e  mid-1990' t i m e  per iod ,  were required items i n  t h e  s tudy .  

r egu la t ed  by t h e  "Current Standards - Newly C e r t i f i e d  Large Engines" publ ished 

i n  t h e  Federal  R e g i s t e r  dated J u l y  1 7 ,  1973. Hydrocarbon (HC), n i t r o u s  oxides  

(NOX), carbon monoxide (CO) and smoke number are s p e c i f i e d  f o r  both turbofan  

and tu rbosha f t  engines .  Fur ther  s p e c i f i c a t i o n s  cover  Time-in-Mode at  Percent  

Rated Power f o r  t h e  purposes o f  r egu la t ing  t h e  t i m e  ( i n  minutes)  t h a t  are t o  

be used f o r  a n a l y t i c a l  p r e d i c t i o n s .  These c u r r e n t  r e g u l a t i o n s  are l i k e l y  t o  

Emissions are 

15 



Table 3.1-1. APET DOC Assumptions. 

Methods Used 

Cost Basis 
Aircraft 

Economic Conditions 

Spares - Airframe 

I 

- Engine 
- Nacelle 

Depreciation 

Annual Utilization 

Block Distance 

Insurance 

Fuel Price 

Maintenance - Engine - Airframe 

Crew Costs 

16 

Basically ATA Method as modified by 
Boeing (1979) with minor changes 

- All Costs in 1981 Dollars 
- "Rubberized," Scalable in Size 

1981 (Except for Fuel - See below) 
6% of Airframe Price 
30% of Engine Price 
6% of Nacelle Price 

15 Years to 10% Residual Value 
(on Total Investment) 

Boeing 1979 Method, with minor 
changes 

300 N Mi 

0.5% per Year (on Fly-Away Price 

$1.50 f $.50 per US Gallon 
(Valid from 1992 and Afterwards) 

GE Preliminary Design In-house Method 
Boeing 1979 Method with Labor 
Rate $14.19/Manhour 

Boeing 1979 Method (Updated to 1981 
Dollars) 
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be updated by a Notice of Proposed Rule Making (NPRM) dated March 24, 1978 

which r e v i s e  t h e  gaseous s tandards ,  including Smoke Number, and conver t s  t h e  

r e g u l a t i o n s  i n t o  S. I. u n i t s .  

For the  acous t i c  r e g u l a t i o n s ,  i t  was proposed t h a t  t he  cu r ren t  FAR 36 

(S tage  3)  r u l e s  which apply t o  turbofan a i r p l a n e s  should be expanded t o  

inc lude  turbopropfan-powered a i rp l anes .  For t h e  mid-1990's changes i n  the  

c u r r e n t  r egu la t ions  could occur as a r e s u l t  of e f f o r t s  being undertaken by 

Working Groups C and D of t he  ICAO and by the  SAE C o m m i t t e e  A-21. 

judgment was made t h a t  the  Stage 3 ru l e s  should be amended t o  more s t r i n g e n t  

l e v e l s  f o r  t h e  f a r f i e l d  no i se  takeoff  and approach s p e c i f i c a t i o n s .  

noted t h a t  no r egu la t ions  a r e  i n  ex is tence  f o r  cabin i n t e r i o r  no i se ,  and t h a t  

passenger acceptance l e v e l s  a r e  the  subjec t  of i nd iv idua l  a i r l i n e s  negot ia-  

t i o n s  with the  a i r c r a f t  manufacturers a s  p a r t  of t he  a i r p l a n e  s p e c i f i c a t i o n  

they  a r e  o f f e red .  

d e l t a s  due t o  t h e  acous t i c  t reatment  required t o  a t t e n u a t e  propfan n e a r f i e l d  

n o i s e ,  i t  w a s  decided t h a t  an i n t e r i o r  l e v e l  i n  t h e  82-84 dBA band would be 

used. 

However, no 

I t  was 

I n  o rde r  t o  make the necessary t r a d e  of a i r f rame weight 
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3.2 THE APET AIRPLANES 

S i x  APET a i r p l a n e s  were designed f o r  t h i s  study; t h r e e  were turbofan  

engine powered and t h r e e  were turbopropfan engine powered. Each of t h e  pro- 

p u l s i o n  types  wa5  exe rc i sed  on t h r e e  p o i n t  des ign  a i r p l a n e s  which had c r u i s e  

des ign  v a l u e s  o f  Mach 0.70, Mach 0.75, and Mach 0.80. A l l  t h e  a i r p l a n e s  had 

t h e  same  c o n s t r a i n t s ,  i . e . ,  they were a l l  designed t o  achieve  the  maximum 

payload range p o i n t  of 150 passengers a t  1000 n a u t i c a l  m i l e s  whi le  observing 

i d e n t i c a l  r u l e s  f o r  f i e l d  l eng th ,  a l t i t u d e  c r u i s e  c a p a b i l i t y ,  engine inopera- 

t i v e  cruise  a l t i t u d e ,  m a x i m u m  approach speed, wing a s p e c t  r a t i o ,  a l t e r n a t e  

f i e l d  l eng th ,  and r e s e r v e  f u e l  allowance. The abbrevia ted  s p e c i f i c a t i o n  f o r  

t hese  a i r p l a n e s  i s  shown i n  Table 3.2-1. The f l i g h t  p r o f i l e  s e l e c t e d  i s  shown 

i n  F igure  3.2-1, and t h e  miss ion  l e g  d e t a i l s  are de f ined  i n  F igure  3.2-2. 

3 .2 .1  Conf igura t ion  and S i z e  S e l e c t i o n  

As d i scussed  above, t h e r e  a r e  two v a r i e t i e s  o f  APET a i r p l a n e s :  

1. A turbofan  powered a i r p l a n e  wi th  7 . 5  bypass r a t i o  engines i n s t a l l e d  
i n  Long Duct Mixed Flow (LDMF) n a c e l l e s .  

2. A turboprop-powered a i r p l a n e  powered by Hamilton Standard 10- 
bladed propfans d r i v e n  by h i g h  p res su re  r a t i o  tu rbosha f t  engines.  

Each v a r i e t y  w a s  exe rc i sed  over t h r e e  c r u i s e  Mach numbers, namely M = 

0.70, 0.75, and 0.80. 

From a number of sou rces ,  inc luding  a General Electric survey  of world- 

wide o p e r a t i o n s  by 70 domestic and fo re ign  a i r l i n e s ,  i t  i s  apparent t h a t  a 150 

passenger a i r p l a n e  des ign  with range l i m i t e d  t o  1000 n a u t i c a l  m i l e s  wi th  f u l l  

payload (150 PAX p l u s  5000 l b  cargo) would have a l a r g e  p o t e n t i a l  market. 

s i z e  a l s o  cha l lenges  the  technology of engines ,  propfans and gearboxes as the  

s h a f t  powers r equ i r ed  are more than twice the  l e v e l s  demonstrated by product ion  

propuls ion  systems of western o r ig in .  A summary o f  the  f a c t o r s  t h a t  were con- 

s i d e r e d  i n  t h e  s e l e c t i o n  of t h e  s i z e  and performance c h a r a c t e r i s t i c s  of t h e  

APET a i rp l ane /p ropu l s ion  systems i s  shown i n  F igure  3.2-3, whi le  F igures  3.2-4 

through -7 are included t o  show t h e  r e s u l t s  of t he  70 a i r l i n e  survey r e f e r r e d  

t o  e a r l i e r .  

f l i g h t s  t h a t  are scheduled f o r  1000 s t a t u t e  miles (or l e s s ) .  

This  

F igure  3.2-8 i l l u s t r a t e s  t he  v e r y  h igh  propor t ion  of domestic 

21 



Table 3.2-1. APET A i r c r a f t  Abbreviated S p e c i f i c a t i o n .  

A i r c r a f t  Technology/Timing - Service  I n t r o d u c t i o n  a f t e r  1990 

Maximum Number of Passengers - 150 

Pas seng e r  Arrangement - A l l  T o u r i s t  Class, Six-Abreast, 32" P i t c h  

Design Range Capab i l i t y  - 1000 N M i  
( F u l l  Payload including 5000 l b  Cargo) 

Average S tage  Length - 300 N M i  

F i e l d  Length (Sea Level)  - 6000 F t  (Sea Level)  a t  Max TOGW 

A l t e r n a t e  F i e l d  Length - Denver (Hot Day); Weight f o r  T r i p  t o  
S. Fran. (100% LF) 

Engine-Out Cei l ing  - 15,000 Ft  

Design Cruise  Mach Number - Varies: 0.7 t o  0.8 

Required Cruise  A l t i t u d e  - 35,000 Ft-Design Range Mission.  

Maximum Approach Speed (Knots) - 135 K t s .  (At MLW = 0.975 x Max. TOGW) 

C apab i 1 i t  y 

Number of Engines - 2  

Engine Location 

Propuls ion Types 

- On Wing 

- Turbofan and Turboprop (Propfan) 

Cruise  SpeedIAlt i tude - W i l l  Vary with Design Mach and Stage 
Length 

Takeoff Gross Weight (TOGW) - Variab le  

Wing Design - Sweep and Thickness Varies  with Design 
Mach 

Wing Aspect R a t  i o  - 11 (For a l l  Values of  Design Mach No.) 

Measures of Merit 

22 

- Maximum TOW 

- Fuel  Burn a t  300 N M i  Stage Length 

- DOC a t  300 N M i  Stage Length 
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< Block Fuel" 

6 
7 
8 

Taxi 9 -13 Descend-Reverse 
T.O. - 0.235#/1500 ft. 
Accel. - to 250 KEAS at 1500 ft. 14 Approach 
C1. - Accel. - at 250 KEAS to 10K 
Accel. - at 10K to: from 250 KEAS 

t o  330 KEAS 
C1. - Accel - at 330 KEAS from 10K to Altitude r'Xff 
C1. - at Const. Mo (0.6, 0.7, 0.8) from Altitude "X" to 40K 
Cruise - at O.oM, 0.7M, 0.8M, at 20K, 30K, 40K 

path of 3-7 

15 Landing 

Reserves .-d 
(200 N. Mi.) 

16 Loiter - 45 Min. at Cr Conditions (as for 8 ) 
17 Loiter - 39 Min. at 0.35M/15K 
18 -22 C1. Same Conds. As 2-7 
23 Cr. - 3.55M at 25K 
24-27 Descend, Same path as 9-13 

KEAS = Equivalent Airspeed in Knots 

Figure 3.2-1. APET Flight Profile (With Reserves). 
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11-15 
16 

17 

18-22 

23 

24-27 
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Def in i t i on  

Taxi-out, 9 minutes a t  ground i d l e  t h r u s t  (6% of FNSLS Max fo r  E3) 

Takeoff - t o  0.235 Mach/1500 f e e t ;  1.25 minutes a t  FNSL Max 
(0.2 Mach) 

Acccl - at  1500 f e e t  t o  250 KEAS 

Climb-Accel - a t  250 KEAS t o  10,000 f e e t  

Accel - a t  10,000 f e e t  t o  climb speed (250 t o  330 KEAS)  

Climb-Acccl - a t  climb rpeed (250 t o  330 KEAS) t o  "X" a l t i t u d e  

Climb - a t  constant Mach (Mach * 0.6 t o  0 . 8 ;  A l t  - "X" t o  40,000 f e e t  

Cruise - Mach - 0 . 6  t o  0 . 8 ;  A l t  = 25,000 t o  40,000 f e e t  

Descend - Const. Mach t o  "XI' a l t i t u d e  

Descend-Decel - a t  280 KEAS t o  10,000 f e e t  

Decel - a t  10,000 f ee t  250 I(EAS 

Descend-Decel - a t  250 KEAS t o  1500 f e e t  

Decel - a t  1500 f e e t  t o  0.235 Mach/1500 f e e t  

Approach/Landing - 2 minutes a t  F N ~ L  nax (0.2 Mach) t o  ge t  fue l  
burn; 6 minutes block t i m e  

Taxi-in - 5 minutes a t  ground i d l e  

Gives block fue l  and t i m e  

Lo i t e r  - 45 minutes a t  c r u i s e  condi t ions 

Lo i t e r  - 30 minutes a t  0.35 Mach/15,000 fee 

Climb-Accel - Same as main mission (250 KEAS f i r s t  climb p a r t ,  
280 KEAS second climb p a r t )  

Cruise - 0.55 Mach/25,000 f e e t  

Descend-Decel - 280 KEAS and 250 KEAS f i r s t  and second p a r t s  of 
descent,  r e spec t ive ly  

Gives r e se rves  - 200 N. M i .  Total  D i s t .  

Figure 3 .2-2 .  APET Mission Leg Definition. 
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ASM = Avai lab le  Seat Miles 
PAX = Number of Passengers 

Engine should be a t  a s i z e  t h a t  a l lows c r e d i b l e  up o r  down s c a l i n g .  
(8000 - 16000 SHP range) .  

A i r c r a f t  range c a p a b i l i t y  t o  be c o n s i s t e n t  with expected f u t u r e  a i r -  
c r a f t  usage i n  1990's.  

Should cha l lenge  cu r ren t  technology f o r  improvements in: 

- S h a f t  engines 

- Gearboxes 

- P r o p e l l e r s  

- Airframe weight 

A i r c r a f t  s i z e  t o  be t a i l o r e d  f o r  short/short-medium haul: Best 
ASM/Gallon and DOC - i s  the  goal.  

A i r c r a f t  design range w i l l  be l imi t ed  so a s  not  t o  pena l ize  economics 
by "overdesign". 

150 and 100 PAX s i z e s  have been considered.  Se lec ted  150 PAX s i z e  
appears t o  meet a l l  t he  ob jec t ives  above. 

~~ ~ ~ ~ ~~~ 

Figure 3.2-3. APET Study Airplane/Engine S iz ing  Guidel ines .  
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Figure  3 . 2 - 4  

THE TOTAL ASM PIE DIVISION 
70 AIRLINE SURVEY WORLDWIDE 

898.6 B i l l i o n  ( T o t a l  P i e )  
4600+ Pax A i r c r a f t  
194 F r e i g h t  A i r c r a f t  
(no t  i n c l .  Combi's) 

THE SHORTHAUL 5 1000 ST M I  OR LESS 
PIE DIVISION, WORLDWIDE 

F igu re  3 . 2 - 6  

478.9 B i l l i o n  P i e  
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THE ASM PIE DIVISION 
WORLDWIDE 

70 A i r l i n e  Survey 
T o t a l  ASM 898620.8 M i l l i o n  
"Short" ASM 478926.0 M i l l i o n  

SHORTHAUL 
WORLDWIDE ASM DIVISION 

70 AIRLINE SURVEY 
Turboprops DC-9-60 

. Trunk 6 Regiona l  C a r r i e r s  
F l i g h t s  - To o r  Less Than 1000 ST M i  

Annual ASM 478.9 B i l l i o n  

I 
I 
I 
I 
I 
8 
I 
I 
I 
1 
I 
I 
I 

Figure  3 . 2 - 5  

Figure  3 . 2 - 7  

I 
Figure  3 . 2 - 4  t h r u  7 .  7 0  Air l ine  - Worldwide Survey of Route S t r u c t u r e .  
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SHORT RANGE AIRCRAFT - STAGE LENGTH UTILIZATION 

North American Operations 
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* OAG = O f f i c i a l  A i r l i n e  Guide 

F igure  3.2-8.  Shor t  Range A i r c r a f t  - Stage  Length U t i l i z a t i o n .  
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Together,  t hese  f i g u r e s  g iven  c l e a r  s u b s t a n t i a t i o n  t o  the  importance of the  

short-haul market, both i n t e r n a t i o n a l l y  and domes t i ca l ly ,  and suppor t  t he  se lec-  

t i o n  of a 1000 N. M i .  maximum range/payload requirement as be ing  reasonable .  

Also,  i t  can be noted from F igure  3.2-8, t h e  f i f t y  p e r c e n t i l e  va lue  of f l i g h t s  

c r o s s e s  the  300-400 s t a t u t e  m i l e  s t a g e  l eng th  curve  and s e r v e s  t o  support  t he  

s e l e c t i o n  of a median va lue  of 300 N. M i .  as r e p r e s e n t i n g  a reasonable  v a l u e  

which t o  use for  t h e  f i g u r e s  o f  m e r i t  i n  ensuing economic eva lua t ions .  

The a i r p l a n e s  designed f o r  t h i s  s tudy  a r e  shown i n  F igures  3.2-9, 3.2-10, 

and 3.2-11 while F igu re  3.2-12 i l l u s t r a t e s  the family of wings t h a t  were 

eva lua ted .  

i t  i s  p red ic t ed  t h a t  t he  use of advanced metal l ic  a l l o y s  and composite m a t e -  

r i a l s  could w e l l  ach ieve  t h i s  l e v e l  of AR by the  mid-1990's. I n  f a c t ,  t h i s  

va lue  might w e l l  be  judged t o  be conse rva t ive  - e s p e c i a l l y  f o r  c r u i s e  Mach 

numbers near  0.70. 

i n  t h i s  c a s e  the M = 0.80 turboprop-powered a i r p l a n e  - i s  shown h e r e  as 

F igure  3.2-13. This f i g u r e  h a s  some noteworthy p o i n t s .  

range/payload point w a s  s e l e c t e d  a t  65% load f a c t o r  (LF) a t  300 n a u t i c a l  m i l e s  

range. 

t i o n  of s t a g e  length could account f o r  some 50% of  the  l i k e l y  usage p a t t e r n  

f o r  t h e  pro jec ted  APET a i r p l a n e .  Also seen  on the  f i g u r e  i s  t h a t  although the  

a i r p l a n e  i s  design l i m i t e d  t o  1000 n a u t i c a l  m i l e s  (wi th  f u l l  payload) i t  

becomes ve ry  f l e x i b l e  wi th  anyth ing  less than 100% LF. This  e f f e c t ,  shown by 

t h e  f l a t n e s s  of t h e  curve  between t h e  i d e n t i f i e d  p o i n t s  (3) and (5) on t h e  

f i g u r e  is  due t o  t h e  f u e l  e f f i c i e n c y  o f  t h e  a i r p l a n e / p r o p u l s i o n  system combi- 

n a t i o n .  

An aspec t  r a t i o  (AR) of 11 w a s  chosen for a l l  of t h e  a i r p l a n e s  as 

The range/payload curve for one of t h e  study a i r p l a n e s  - 

The f i g u r e  of Merit 

The seventy a i r l i n e  survey a l r e a d y  a l luded  t o  showed t h a t  t h i s  s e l ec -  

A s  w i l l  be d iscussed  i n  more d e t a i l  i n  S e c t i o n  4 .2 ,  wing and t h r u s t  s i z i n g  

f o r  APET a i r p l a n e s  w a s  undertaken us ing  w e l l  known parameters.  

t i o n ,  which i s  devoted t o  an overview of the  s tudy  r e s u l t s ,  Table 3.2-2 i s  

included t o  summarize the  wing and t h r u s t  s i z i n g  va lues  t h a t  were used f o r  t h e  

f l i g h t  ana lyses ,  

e f f i c i e n c y  - Available Sea t  Miles per Gallon (ASM/GAL) - are shown on Figure  

3.2-14. Here, a l l  s i x  APET a i r p l a n e s  are por t rayed  ve r sus  the  c u r r e n t  des igns  

of a i r p l a n e s  employing h igh  bypass- ra t io  turbofan  engines.  It may b e  seen 

t h a t  the  APET Mach 0.75 turboprop has  about twice the  f u e l  e f f i c i e n c y  of any 

e x i s t i n g  a i r p l a n e  a t  a range of 500 n a u t i c a l  m i l e s .  

28 

I n  t h i s  sec- 

The r e s u l t s ,  i n  t e r m s  o f  t h e  o f t e n  used measure of f l i g h t  
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AREA (SQ FT) 1250 1000 850 1250 1000 850 1250 1000 850 
SPAN (FT) 117.3 104.9 96.7 117.3 104.9 96.7 117.3 104.9 96.7 

MACH NO .7 

ASPECT RATIO 1 1  
TAPER MTIO .20 

ROOT t/C .20 
WING BREAK t/c .18 

TIP t / C  .I5 

s-=p (Xc/&)-Deg 100 
.75 
zoo 
1 1  
.20 
. I 8  
. I 3 1  
.I23 

.8 
27O3Oo 
11 
.20 
.144 
. I 1 0  
-101 

c - Wing Chord 
t /c  = Thickness  to Chord Ratio 

Figure 3.2-12. M E T  Wing Planform Families. 
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30.000 

20 ,000  

10,000 

APET BASELINE AIRCRAFT 

Propfans - Design Uach - 0 . 8  

Usx. TOGW - 110990 lb 

@ 
@ 

Max Payload (ZFU Limited)  - 34402 lb 
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Table 3.2-2.  APET Aircraft Sizing Results .  

Powerpladt Type Propfan 

Design Mach No. 

Selected (Wo/Sy) 

Selected LF,/W, @ .02H/SL 

Wing Sized By: 

Engine Sized By: 

Resulting TUGU 

0.75 

120.5 

0.264 

Buffet 

Denver TO 

108845 

0 .7  

115.2 

0,261 

Buffet 

Denver TO 

107309 

0.8 

126.2 

0.268 

Fuel Cap. 

Denver TO 

110986 

0.75 

120.5 

0.240 

Buffet 

Denver TO 

109305 

Turbofan 

0.8 

120.6 

0.249 

Fuel Cap. 

Denver TO 

111970 

0.7 

115.2 

0.235 

Buffet 

Denver TO 

108036 

140 

MET AIRCRAFT FUEL EFFICIENCY 

lo00 M I  Design Range 

65% Load Factor  

TP - Turboprop 
TP - Turbofan 

.7n 

.751 

.an 
120 

100 

40 

20 

0 

. in 

.75M . Bn 

Current High 
Bypass Ratio 
Engine A i r c r a f t  
(757-200, 767-200 
A310, M - 8 0 )  

0 500 I000 

Figure 3.2-14. APET Aircraft Fuel Eff ic iency 1000 NMI 
Design Range 65% Load Factor. 
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Estimates fo r  a i r p l a n e  weights  used a p r o j e c t i o n  of a 1972 weight sce- 

n a r i o  f o r  t he  air f rame ( inc lud ing  av ion ic s  bu t  less the propuls ion  system). 

This  s cena r io  i s  from a d a t a  base contained i n  the  Reference 33 modified by 

General E l e c t r i c ,  where necessary ,  t o  f i t  the  AF'ET a i r p l a n e  d e f i n i t i o n .  From 

t h i s  d a t a  base  the "1990's weight" i s  es t imated  by applying weight r educ t ion  

f a c t o r s  t o  t h e  p r i n c i p a l  weight components of the  a i r p l a n e  s t r u c t u r e  and 

systems. These f a c t o r s  are  shown on Table 3.2-3. 

compoaent/System 

Table 3 . 2 - 3 .  A i r c r a f t  Component Weight Est imat ion.  

Reference Weight (1) 

34 

Wing - Bending S t r u c t u r e  
Wing - Shear and Other  S t r .  
T a i l  
Fuselage 
Landing Gear 
Fuel  System 
F l i g h t  Controls - Hydraul ics  
E l e c t r i c a l  
Pneumatics and A i r  mud. 
hit i- I C  ing 
Inatruments 
Avionics 
Furnishings 

I t a 6  

I 
( l )  "1972 Techology" - Represents  Technology of 727/737/DC9, etc. - Data base from S.A.I./Douglar Report (Ref 33) 

(NASA CR-151970) - S.A.I./Douglas Formulas - Modified by C.E. 

(*' "1995 Technology" - Represents  N E T  Technology - Estimated us ing  S.A.I./Douglas d a t a  base 
with Weight Reduction Fac tors  - 2% Weight Contingency added - Austere  passenger  fu rn i sh ings  and 
accommodations (because a i r c r a f t  is 
cued on s h o r t  s t age  lengths) .  

(3) A l l  E l e c t r i c  Ai rp lane  

Weight Reduc t ion 

(Es t . )  (*) 
Fact  o r s  , 

0.9 
0.8 
0.85 
0.90 
0.9 
1.0 
0.8(3) 

0.8 (3)  

1.0 
0.75 
0.9 
1.00 

1.0(3) 

1.2 (3)  
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3.3 REFERENCE TURBOFAN ENGINE 

3.3.1 D e f i n i t i o n  

A sca led  down ve r s ion  of the  E3 F l i g h t  Propuls ion  System (FPS) w a s  

designed f o r  t h i s  s tudy.  S imi l a r  to  t h e  f u l l - s c a l e  engine,  t h e  sca led  ve r s ion  

employs a s ingle-s tage  f a n  and a s i n g l e  s t a g e  boos te r  with cont inuous b leed .  

Due t o  an inc rease  i n  bypass r a t i o  of the  scaled-down engine (from 26.8 f o r  

t h e  FPS t o  27.5 f o r  t he  N E T  turbofan)  the  number of LP t u r b i n e  s t ages  w a s  

increased  from f i v e  t o  s i x .  The HP compressor, a 10-stage u n i t ,  i s  r e t a i n e d  

as is  a 2-stage HP tu rb ine .  The combustor has  been redesigned from a double 

dome conf igu ra t ion  t o  a s i n g l e  dome, low smoke, low emissions conf igu ra t ion .  

The engine i s  i n s t a l l e d  i n  a Long Duct Mixed Flow (LDMF) n a c e l l e  where a common 

fan  and co re  nozzle  i s  used i n  conjunct ion wi th  a high e f f i c i e n c y  convoluted 

mixer. The engine and n a c e l l e  c ros s  s e c t i o n  i s  shown on Figure  3 . 3 4 ,  which 

a l s o  i d e n t i f i e s  the d i f f e r e n c e s  included r e l a t i v e  t o  the  f u l l - s c a l e  E3 pro- 

pu l s ion  system. 

3.3.2 Cvcle S e l e c t i o n  

To achieve  a 4000 pound t h r u s t  l e v e l  a t  maximum climb t h r u s t  l e v e l  and 

Mach = 0.80 f l i g h t  speed a t  35 thousand f e e t  on a s tandard day p lus  18" F, a 

sea l e v e l  s t a t i c  t h r u s t  engine of approximately 17,600 pounds r e s u l t s  from the  

engine def ined  above. A fan  cor rec ted  a i r f l o w  of about 730 pounds per  second 

and a co r rec t ed  core  flow near  57 pounds per  second are requi red  t o  make the  

t h r u s t  a t  a cyc le  set-up temperature l e v e l  of 2258' F a t  the maximum climb 

a l t i t u d e  p o i n t .  

i n  t h i s  engine f o r  Denver hot-day performance. 

A contingency maximum climb temperature  of 2490" F i s  requi red  

3.3.3 Engine Weight and Dimensions 

A bas i c  engine weight of  3,013 pounds w a s  es t imated  f o r  the  APET turbofan  

u n i n s t a l l e d .  I n s t a l l e d  with a mixer, r e v e r s e r ,  i n l e t  and o t h e r  i n s t a l l a t i o n  

items i t  weighed 4,453 pounds. 

added f o r  the  wing pylon t o  o b t a i n  a f u l l y  i n s t a l l e d  weight of  4,898 pounds. 

A f u r t h e r  allowance of 445 pounds should be 

The f an  se l ec t ed  had a diameter of  59.6 

the  f a n  r o t o r  lead ing  edge t o  the a f t  f l ange  

c u l a t e d  t o  be 90 inches.  

inches  and the  engine length  from 

of the  engine rear frame was ca l -  
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3.4 APET TURBOSHAFT ENGINES 

3.4.1 Candidate Engines 

S i x  cand ida te  engines  were defined f o r  t h i s  study. They a r e  shown i n  

t a b u l a r  form on Table 3.4-1. From these cand ida te s  NASA/GE s e l e c t e d  engines  

de f ined  as 2(b) and 3(b) f o r  more d e t a i l e d  des ign  and a n a l y s i s .  

Engines 2(b)  and 3 (b )  have v e r y  s imi l a r  performance and weight. They are 

d e p i c t e d  on Figures 3.4-1 and 3.4-2, r e s p e c t i v e l y .  

Both engines  are 2-shaft gas gene ra to r s  which a t  t he  b a s e l i n e  s i z e  d e l i v e r  

13,000 s h a f t  horsepower t o  t h e  propfan r educ t ion  gearbox. A s  can be noted 

from t h e  f i g u r e s ,  very  similar cyc le  c h a r a c t e r i s t i c s  are shown d e s p i t e  t h e  

f a c t  t h a t  engine 2(b)  i s  an a l l - a x i a l  des ign  whi le  engine 3 (b )  employs an 

ax i - cen t r i fuga l  compressor system. E i the r  engine could use a 3 o r  a 4 s t a g e  

power t u r b i n e  depending on t h e  l e v e l  of technology addressed i n  a development 

program. 

3.4.2 Cycle Assumptions 

Tables 3.4-2 and 3.4-3 are  included t o  show t h e  c y c l e  comparisons and the  

component aerodynamic comparisons of the  two s e l e c t e d  s tudy  engines .  The 

e f f e c t s  of v a r i a t i o n  i n  cyc le  pressure  r a t i o  and t u r b i n e  gas temperature on 

the  s i z e  of the  APET tu rbosha f t  engine i s  g iven  i n  F igure  3.4-3. Booster,  

c o r e  co r rec t ed  flow s i z e s  are portrayed as boos te r  p re s su re  r a t i o  i s  v a r i e d ;  

t h i s  imp l i e s  an o v e r a l l  engine pressure  r a t i o  change as a d i r e c t  func t ion  of 

boos t  p re s su re .  E f f e c t s  on HPT s i z e ,  maximum take-off compressor d e l i v e r y  

temperature (T3) as w e l l  as gearbox sha f t  horsepower and SFC e f f e c t s  are a l l  

dep ic t ed  i n  t h i s  f i g u r e .  

v a r i a t i o n  l e d  t o  the  f i n a l  s e l e c t i o n  of t he  1.75 boost p re s su re  r a t i o  and the  

Overa l l  P re s su re  R a t i o  (OPR) j u s t  above 40 t o  one. 

S tud ie s  o f  s imi l a r  cyc le  e f f e c t s  o f  parameter 

3.4.3 Propfan Var i ab le s  

The s e l e c t i o n  of engine c y c l e  parameters r equ i r ed  p r i o r  examination of 

propfan v a r i a b l e s ,  f o r  t h e  un ins t a l l ed  and i n s t a l l e d  propuls ion  systems. 
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( 1  - 

Table 3.4-1. Candidate Turboshaf t  Engines.  

Case Engine 
# Descript ion 

1 Unboos t e d  
2-Shaft 

2 (a)  Boosted 
2-Shaft 

2(b)  Boosted 
2-Shaft 

3 (a)  Boosted 
2-Shaf t 

3(b)  Boosted 
2-Shaft 

* 4  Boosted 
I 

Low Pressure  High Pressure  
Compressor Compressor HP Turbine 

Stages Stages Stages 

-0- 10 Axia l  2 

I 2 1, h igh  r / R  lo I 
2, low r / R  10 Axial 2 

1, high  r/R 5 Axial  2 

2, low r/R 5 Axial 2 

2, low r/R 10 Axial  * 

1 Cen t r i fuga l  

1 Cen t r i fuga l  

Overa l l  
LP Turbine Pr e8 s u r  e 

S t  ages Rat io  

3 23: 1 

3 38: 1 

3 or 4 38: 1 

3 38: 1 

3 or 4 38: 1 

* 38:l I 
* This  engine used a s i n g l e  s t a g e  HP tu rb ine ,  a s i n g l e  s t a g e  in te rmedia te  tu rb ine ,  and a 

3-stage LP turbine ac t ing  t o  d r i v e  t h e  t h i r d  s h a f t  as a f r e e  tu rb ine .  

- Axial Flow Compressor 

- @Stage Power Turbine 

[Engine 2(b) 1 

BOOSTER CORE POWER TURBINE - 

PIP * 7.6 3 .  'Tip/ , fF= 9 . 2 4  Scaled E 

r/r - .67 'Tip/ J8= 1498 $PAvg = .95 

PR = 1 . 1 5  PR = 23 

F igu re  3.4-1. APET Turboprop Gas Genera tor .  

42 



I 
I 
I 

Booster 

vTip/\/e = 924 

r /  r - .67 

PR * 1.75 

Core (PROA - 23) 

PR - 7.12 

Axial - V T i p l f l  1498 

Centrifugal - VTipIf i  - 1407 

PR = 3.23 

Power Turbine 

[Engine 3 ( b ) l  

Figure  3 . 4 - 2 .  APET Turboprop Gas Generator Axi-Centrifugal Compressor 
Four-Stage Power Turbine. 
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Table 3 . 4 - 2 .  APET Turboprop Configuration Studies. 

Cycle Assumption Comparisons 

~~~ 

0 At M0.80/35000" + 18" 

Thrust 
PR Overall 
T41 - " F 

w m s  LP 
PRLP 
xp PolyIAdia 
AP Gooseneck 

Core 
PR Core 
'IC PolyIAdia 

AP Combustor 
'IC ombus tor 

No. HPT Stages 
Wfi/P HPT 
nt (Cycle) 

Ah/T LPT 
PIP LPT 
CPT 

P8/PO 

Total Cooling Air 
Total Chargeable 

' h o p  
SFC 

Propeller HP @ 0.8135K + 18" 
Propeller HP @ 0.2ISL + 27" 

All Axial 

4000 
40.2 
2390 

69.9 
1.75 

0.88810.88 1 
1.5% 

44.2 
23.0 

0.89810.848 

4.95% 
0.995 

2 
6.53 
0.914 

0.101 
7.6 
0.920 

1.50 

17.0 
9.3 

0.809 
Base 

6450 
12500 

Axi 
Centrifugal 

4000 
40.2 
2390 

70.3 
1.75 

0.88810.881 
1.5% 

44.5 
23.0 

0.897/0.846 

6.0% 
0.995 

2 
6.65 
0.915 

0.100 
7.4 
0.920 

1.50 

17.0 
9.3 

0.809 
+O. 5% 

6445 
12500 



Table 3.4-3. APET Turboprop Configurat ion S tudies .  

Component Aerodynamic Comparisons 

A) - Booster/LP Spool 

No. Stages 
WdT/ 8 
WA/AA 
V T i p  dT 
r/ r 
PR 

B) Compressor 

No. Stages 
wdT/ 6 

WA/AA 
V T i p / &  Axial  
V Tip/  dT Impe 1 l e r  
PR 
Last  Blade Height 

C)  HP Turbine 

No. Stages 

Ah/ T 

JI P i t c h  (Avg. 
1st Stage Blade Height 

WdTIP 

PIP 

D) LP Turbine 

No. Stages  
Ah/ T 

JI P i t c h  (Avg.) 
P /P 

 AN^ 

2 
69.9 
39.0 

924 
0.67 
1.75 

10 
44.2 
38.0 
1498 

23.0 
0.51" 

-- - 

2 
6.53 

0.086 
5.14 
0.66 
1.12 

4 
0.100 

7.6 
0.95 

42.5 * 109 

A l t i t u d e  Thrust = 4000 # 

Ax i 
Cent r i f ug a1 

2 
70.3 
39.0 

924 
0.67 
1.75 

5+1 
44.518.43 
38.0132.3 

1498 
1407 

7.12 x 3.23 = 23 
0.42" 

2 
6.65 

0.086 
5.16 
0.66 
1.13" 

4 
0.100 

7.6 
0.95 

42.5 * 109 

45 



ao 

70 

60 

3 

50 

40 

46 

Cycle PR, T41 Impact on Pertormance Component Sizes, ~3 Levels 

4000# M f i ~  Thrust Sized Engines 

Boos ter/Core 
Sizes 

= 23509 MXCLl 2450'; @ T-0 
= 2450°F MXCL, 2550°F @ T-0 

0 T41 

Max T-0 T3 
OF 

Gearbox HP @ .2 /SL 

Booster 

+1000' 

1 .o 1.5 2 .o 

1100 1 / 
I 1000 12000 

1200 r 13000 

/, 

.50 
HPT Size 

4- .4a 

Min 0.8/351( SFC 

'-1.2% -0.6 

1 .o 1.5 2.0 1 .o 1.5 2.0 - Booster PR - - 
M C PR 23 34.5 46 

x L OA 

Figure 3 . 4 - 3 .  Turboprop Configuration Studies. 



Propfan v a r i a b l e s  of t i p  speed and d i s c  loading (SHP/D2) f o r  Mach numbers 

between 0.70 and 0.80 a t  a l t i t u d e  were examined. Propfan v a r i a b l e s  e f f e c t s  on 

take-off and climb-out performance were a l s o  e s t a b l i s h e d .  The r e l a t i v e  climb 

performance of the  competing turbofan and turbopropfan powered a i r p l a n e s  a r e  

shown as F igures  3.4-4 and -5. The conclus ion  t h a t  can be  drawn i s  t h a t  the  

s u p e r i o r  climbout performance ( i n  terms o f  f u e l  burned) of the  propfan powered 

a i r p l a n e  i s  a po ten t  f a c t o r  i n  s e l e c t i n g  propfan parameters f o r  the  s h o r t /  

medium ranges of p a r t i c u l a r  i n t e r e s t  i n  the APET a i r p l a n e  ana lyses .  A h igh  

propfan t i p  speed i s  b e n e f i c i a l  i n  both takeoff  and c r u i s e  modes o f  f l i g h t .  A 

moderate d i s c  loading i n  the  range of 20 t o  30 SHP/D2 i s  b e n e f i c i a l  f o r  c r u i s e  

performance i f  d iameter  and weight e f f e c t s  on the  a i r p l a n e  are neglec ted .  

Also,  t h e  lower the  d i s c  loading ,  the h ighe r  i s  the  va lue  of torque r a t i o  

a c r o s s  the  r educ t ion  gearbox d r i v e  t r a i n .  (For the  same t i p  speed, a l a r g e r  

diameter propfan with lower power loading, i n e v i t a b l y  r e q u i r e s  an  inc rease  i n  

d r i v i n g  torque) .  

An examination of propfan diameter e f f e c t s  on a i r p l a n e  geometry a l s o  shows 

d isadvantages  f o r  .the lower loaded propfans: 

0 Landing gear length  (weight) is  increased  

0 Nacel le  l a t e ra l  placement on the  wing r e q u i r e s  a f u r t h e r  outboard 
loca t ion ,  g iv ing  rise t o  g r e a t e r  asymmetric t h r u s t  moments 

0 A l a r g e r  t a i l  volume c o e f f i c i e n t  i s  r equ i r ed  

0 Propfan, gearbox, and i n s t a l l a t i o n  weights are increased .  

A d i s c u s s i o n  on the  e v a l u a t i o n  of s e l e c t i o n  c r i t e r i a '  f o r  t he  propfan d i s c  

loading  and t i p  speed w i l l  be found la te r  i n  t h i s  r e p o r t  i n  Sec t ion  4.4. 
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TF Vs. TP (Thrust in Lbs) 
Both Achieve 4000 Lb Installed Thrust 
at M = 0.80, 35K, AT, = + 18OF 

0.20J I 

I I 1 1 I 
I 

0.2 0.3 0.4 0.5 0.55 0.60 0.70 0.80 
Mach Number 

Figure 3 . 4 - 4 .  APET I n s t a l l e d  Climb P a t h  Comparison. 

Area of Interest for Enrout 
En ine Out Performance u 4 

TF vs. TP (Thrust in Lbs) vs. SHP 
Both Achieve 4OOO Lb Installed Thrust 
at M = 0.80, 35K, AT, = + 18OF 42 

'47 

0.2 0.3 014 015 0.55 0.60 0.70 0.80 
Mach Number 

Figure 3 . 4 - 5 .  APET I n s t a l l e d  Climb Pa th  Comparison. 
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3.5 PERFORMANCE COMPARISONS 

Performance comparisons between the unins  t a l  l e d  , and i n s  t a 1  led  , t u rbo fan  

and turboprop engine i n s t a l l a t i o n s  addressed the  p r i n c i p a l  f a c t o r s  t h a t  con- 

t r i b u t e  a d d i t i o n a l  d rag  of s e l e c t e d  conf igu ra t ions ,  and f o r  t h e  turboprop 

d e t a i l e d  assessments were made f o r  the n a c e l l e  shape, engine i n l e t  and exhaust 

systems, h e a t  exchanger des ign  parameters f o r  t h e  gearbox a i r - to -o i l  coo le r  

i n s t a l l a t i o n s ,  wetted areas and a d d i t i v e  d rag  due t o  propfan supe rve loc i ty  

e f f e c t s .  By NASA d i r e c t i o n ,  i n t e r f e r e n c e  e f f e c t s  betwwen the  n a c e l l e s  and 

wings were not  included f o r  e i t h e r  form o f  propuls ion  systems, because high- 

speed turboprop wind tunne l  programs a t  Ames Research Center are s t i l l  i n  

p r o g r e s s ,  and f i n a l  d a t a  i s  no t  y e t  a v a i l a b l e .  Likewise, t h e  b e n e f i c i a l  e f f e c t  

of s w i r l  r ecovery  by t h e  wing w a s  no t  inc luded  a t  t h i s  t i m e ,  f o r  t h e  same reason. 

Un ins t a l l ed  performance comparisons were based on an estimate t h a t  t he  

APET MCR = 0.80 a i r p l a n e  would r equ i r e  approximately 4000 l b  of n e t  t h r u s t  a t  

t he  end of climb on a hot  day, whether powered by tu rbofan  or turboprop 

engines.  

e s t i m a t e s  o f  the  take-off and climb performance t h a t  could  be expected from 

both t h e  turbofan  and turboprop engines. Table 3.5-1 shows these  comparisons 

i n  t e r m s  of percent  o f  n e t  t h r u s t  a v a i l a b l e  and e s t a b l i s h e s  the  p o t e n t i a l  

s u p e r i o r i t y  of t he  propfan s y s t e m  a l l  t h e  way from Sea Level Takeoff t o  the  

s e l e c t e d  start of c r u i s e  a l t i t u d e  point.  

The cyc le  assumptions used i n  Tables 3.4-2 and -3 were expanded t o  

For the  i n s t a l l e d  systems, a bookkeeping system w a s  e s t a b l i s h e d  and 

b u i l t  i n t o  the  performance computer decks. This  system i s  i l l u s t r a t e d  by 

Figure  3.5-1 which shows the  f a c t o r s ,  and t h e i r  magnitudes, f o r  a t y p i c a l  

h igh  speed c r u i s e  po in t .  

Table 3.5-1. N E T  Unins ta l led  Comparisons. 

~ 

0 M0.80/35K + 18" - FN 
- SFC 

0 MO.2/SL + 27" - FN 
- SFC 

0 M0.2/5330 + 52" - FN 
- SFC 

0 M0.6/20000 f t  + 18" - FN 
- SFC 

*Denver, Hot Day Takeoff. 

Ref. TF 

4000 
Base 

Base 
Base 

Base 
Base 

Base 
Base 

Base TP 

4000 
-10.6% 

+18.1% 

+13.2% 

+ 8.0% 

-31.0% 

-31.7% 

-16.4% 
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M = 0.80 ,  35K, Max C R .  

I 
2.4% 

I 
TP - 

TP - 

Boundary Layer Diverter 8 / Purge System 

- Heat Exchanger* 

Wing (AM) 

Pressure 

Frict ion 

*Heat Exchanger as shown on 
base can be reduced &.l%) 

using wing leading edge i n s t .  

Figure 3.5-1. APET Turbofan IS Turboprop Installation Loss Bookkeeping. 
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3.6 GEUBOXES 

The a t t r i b u t e s  considered t o  be most d e s i r a b l e  (no t  n e c e s s a r i l y  i n  the  

o r d e r  o f  importance f o r  ranking  purposes) are as follows: 

1. High e f f i c i e n c y  o f  torque t r a n s f e r  

2. Low weight f o r  t h e  t ransmi t ted  torque 

3. I n i t i a l  P r i c e .  (Here s i m p l i c i t y  i s  a g r e a t  v i r t u e )  

4. R e l i a b i l i t y  (The same comment as f o r  3 above). 

Building fr.om an e s t a b l i s h e d  da ta  base ,  a number of c a n d i a t e  gearboxes,  

both in - l ine  and o f f s e t  conf igu ra t ions ,  were pre l iminary  designed and screened. 

It is  appropr i a t e  a t  t h i s  po in t  t o  emphasize the  c o n t r i b u t i o n  t h a t  i s  

made t o  gearbox s i z e  and weight reduct ion ,  by the  use of the  propfan. I f  the  

t h r u s t  of a conventional p r o p e l l e r  were sca l ed  up by a f a c t o r  of t e n ,  t h e  

gearbox torque would of n e c e s s i t y  be sca led  up by a f a c t o r  of t e n  times the 

.square r o o t  of ten .  

propfan allows a r educ t ion  i n  torque by a f a c t o r  of 1/2.63, and thus  the prop- 

f an  dedica ted  gearbox g r e a t l y  b e n e f i t s  from a lower s t a g e  r a t i o  and a reduced 

torque. This i s  i l l u s t r a t e d  i n  Figure 3.6-1 where a l l  t he  f a c t o r  d i f f e r e n c e s  

between a conventional p r o p e l l e r ’ s  e f f e c t s  on gearbox s i z i n g  a r e  shown compar- 

a t i v e l y  with the  requirements f o r  a propfan gearbox. 

The h igh  t i p  speed and power d e n s i t y  (SHP/D2) of t h e  

3.6.1 Gearbox S e l e c t i o n  

From t h e  s l a t e  of cand ida te  gearboxes, both an o f f s e t  and an i n - l i n e  

gearbox were s e l e c t e d  f o r  f u r t h e r  requirements inc luding  weight and c o s t  

e s t ima t ing .  A l l  of t he  gearboxes tha t  have been considered, i nc lud ing  the  

two t h a t  were s e l e c t e d  f o r  f u r t h e r  e f f o r t s ,  a r e  f u l l y  descr ibed  i n  Sec t ion  4.6 

of t h i s  r e p o r t .  

The o f f s e t  gearbox w a s  es t imated  t o  weigh 1068 l b s  and t h e  in - l ine  gearbox 

w a s  es t imated  t o  weigh 94 l b s  more. Both these  estimates are l i k e l y  t o  be 

reduced with f u r t h e r  e f f o r t s  t h a t  a r e  scheduled i n  the APET follow-on t a s k s  

t h a t  have been con t r ac t ed  by NASA, and which w i l l  be repor ted  l a t e  i n  1984. 
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E f f e c t  o f  S c a l i n g  h P r o p e l l e r  Technology 

Turboprop (14RF P r o p e l l e r ) *  1300 HP up x 10 13,000 HP 

ut ( f t l s e c )  715 ~ Same ,715 

SHP/D2 ( h p / f t 2 )  I 1 1 . 8  Same - 11.8 

1 
D ( f t )  

RpFl 1300 v-21)nvn x /i6- 

Ratio * 15.9 

Torque ( f t - l b )  - 

U t  

SHP/D2 

D 

Wl4 

Ratio Sane ~ 6 . 0 5  * 

Torque 19 d 8 ,up x 10 x f i - 6 3 1 6 8  

* The 14RF Propel ler  is a Hamilton Standard 
Designation f o r  a Modern Comuter A i r c r a f t  
Propel ler  

Figure 3.5-1. APET Gearbox Study. 
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3.6.2 Gearbox Materials 

For t h i s  study, main d r i v e  gear  m a t e r i a l s  o f  Vasco X2 Mod or equ iva len t  

have been s e l e c t e d .  Bearings a r e  o f  M50 a l l o y  and t i t an ium a l l o y s  have been 

used, where poss ib l e  f o r  main s h a f t s .  Aux i l i a ry  gea r s  t o  d r i v e  the  lub r i ca -  

t i o n  system, t h e  power o f f t a k e  f o r  a i r c r a f t  accesso r i e s  and t h e  l i k e  a r e  

s e l e c t e d  from AIS1 9310 material. The main housings have been e s t ima ted ,  a t  

t h i s  t i m e ,  i n  cast aluminium metal. Magnesium a l l o y s  and/or  t i t an ium fab r i -  

ca t ed  housings w i l l  be cons idered  i n  the f u r t h e r  re f inements  of t he  c u r r e n t  

des igns  . 

3.6.3 Condition Monitoring 

E f f e c t i v e  v i t a l  func t ion ,  as w e l l  as d i a g n o s t i c ,  i n s t rumen ta t ion  w i l l  be 

needed i n  the f u t u r e  turboprop gearboxes. Informat ion  p rocesso r s  can f a u l t  

i s o l a t e  t o  a l i n e  r e p l a c e a b l e  u n i t  (LRU).  The follow-on APET s t u d i e s  w i l l  i n c l u d e  

a s u b s t a n t i a l  e f f o r t  t o  s e l e c t  and de f ine  c r i t i ca l  s e n s o r s ,  s enso r  t echno log ie s ,  

p rocess ing  and memory u n i t s ,  and an i n t e r a c t i v e  system which i s  capab le  of be ing  

i n t e r r o g a t e d  and monitored by t h e  Ful l  Au thor i ty  D i g i t a l  Engine Cont ro l  (FADEC). 

3.6.4 Lubr i ca t ion  

Current US turboprops use shared o i l  systems with t h e  engine gas  genera- 

t o r .  The s e l e c t i o n  of t h e  o i l  for t h i s  system h a s  h i s t o r i c a l l y  been made i n  

favor  o f  t h e  s y n t h e t i c  o i l s  t h a t  perform b e s t  i n  the  ho t  bea r ing  environment 

of t he  tu rb ine  s t a g e s  o f  t h e  engine.  For APET, h ighe r  v i s c o s i t y  o i l s  wi th  

boundary a d d i t i v e s  have been evaluated us ing  t h e  TELSGE Computer Program 

(Reference 4 2 ) .  This ,  with o t h e r  a n a l y t i c a l  t echniques ,  h a s  suggested t h a t  a 

good balance of phys ica l  p r o p e r t i e s ,  cos t  and near-term a v a i l a b i l i t y  may be 

a f forded  by the  use of an Emgard EP 75W-90 (Frigid-Go) formula. This t y p e  

of l u b r i c a n t ,  i n  a non-shared o i l  system i . e .  one dedica ted  t o  the  p r o p e l l e r  

gearbox a lone ,  has  good p o t e n t i a l  t o  improve both load-carrying c a p a b i l i t i e s  

of t h e  g e a r s ,  and inc rease  the  scor ing  l i f e  f a c t o r s .  Coupled with supe r io r  

f i l t r a t i o n  sys t ems ,  modular gearbox cons t ruc t ion ,  s u i t a b l e  func t iona l  i n s t r u -  

mentation e t c .  t h e  f u t u r e  f o r  h igh  torque gearboxes r e l i a b i l i t y  w i l l  be 

g r e a t l y  improved r e l a t i v e  t o  e x i s t i n g  gearboxes. 
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3.7  NACELLES, AND NACELLE TECHNOLOGY 

An h i s t o r i c a l  survey w a s  made of a number of  previous i n s t a l l a t i o n s  o f  

turboprop engines .  I n s t a l l a t i o n s  of  the l a t e r  T-56 models and those of the  

Roll-Royce "Tyne" engine are  of  p a r t i c u l a r  i n t e r e s t  because they r ep resen t  the  

h i g h e s t  horsepower i n s t a l l a t i o n s  made by a i r f r ame  manufacturers  i n  the Western 

World. The survey showed a number of l i m i t i n g  f a c t o r s  i f  a i r p l a n e  speeds are  

p ro jec t ed  i n t o  the  Mach 0.70 t o  0.80 range. 

APET type performance is  a key technica l  i s sue .  

Nacelle des ign  technology f o r  

3.7.1 Geometric S e l e c t i o n  

Apart  from the  NASA sponsored RECAT s t u d i e s  c a r r i e d  out  i n  the middle 

n ine teen-sevent ies ,  t h e r e  have been only a l imi t ed  number of r e p o r t s  t h a t  

assist i n  the  process  of s e l e c t i n g  the n a c e l l e  geometric l oca t ion .  NASA Ames 

wind tunnel  program f o r  h igh  speed n a c e l l e  research  on a swept-wing i s  of 

p a r t i c u l a r  importance, and the r e s u l t s  from the  NASA tests have been used t o  

j u s t i f y  the n a c e l l e  types and loca t ions  repor ted  i n  t h i s  s tudy.  Fore and 

a f t  l o c a t i o n  f o r  an on-the-wing nace l l e  is  by no means an e s t a b l i s h e d  

sc ience  with w e l l  understood ground ru les .  Likewise,  t he  spanwise l o c a t i o n  

i s  equa l ly  unce r t a in  with regard  t o  secondary e f f e c t s  such a s  cab in  noise  

(and sound a t t e n u a t i o n  weight p e n a l t i e s ) ,  asymmetric t h r u s t  and drag ,  ground 

c l ea rance  c r i t e r i a  and the  l i k e .  

F igure  3.7-1 i l l u s t r a t e s  one of t he  models t h a t  have been used i n  the 

NASA high-speed wind-tunnel program while F igure  3.7-2 shows the  e n t i r e  

family of n a c e l l e s  and l o c a t i o n s  t h a t  have been considered dur ing  t h i s  APET 

s tudy . 
A t  t h i s  t i m e  t h e r e  appears  t o  be no f r o n t  running f a v o r i t e  arrangement 

f o r  l o c a t i o n  or  f o r  n a c e l l e  type.  Further  e f f o r t s  w i l l  be requi red  before  

a well-based dec i s ion  of geometry could be made. 

3.7.2 I n l e t  S tud ie s  

Both s i n g l e  and dual  o f f s e t  i n l e t  des igns  have been analyzed. The f i r s t  

was used with an o f f s e t  gearbox 

second w a s  used with an  in- l ine  conf igura t ion .  

propuls ion system arrangement while  the 
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The estimated performances of  t hese  i n l e t s  were v e r y  c l o s e  t o  each o t h e r  

and o t h e r  f a c t o r s  than aero  performance and recovery  would have t o  be used 

repor ted  be fo re  a s e l e c t i o n  could be j u s t i f i e d .  

i n  d e t a i l  i n  Sect ion 4.7 of  t h i s  r e p o r t .  

Both t h e s e  i n l e t  des igns  are 

3.7.3 Exhaust Nozzles 

These were analyzed on both an u n i n s t a l  ed and an  i n s t a l l e d  bas s ,  with  

cons ide ra t ions  o f  b o a t t a i l  angle  and flow suppress ion  being taken i n t o  e f f e c t .  

The low pressure  r a t i o  turboprop exhaust  system f i n a l l y  s e l e c t e d  w a s  based on 

a 10" b o a t t a i l  angle 'and  a f u l l y  submersed nozz le  plug.  

Although adequate a n a l y t i c a l  d a t a  is  a v a i l a b l e  f o r  t h e  l e v e l  of  e f f o r t  

r equ i r ed  by t h i s  s tudy ,  more d e t a i l e d  ana lyses  and model tests would be 

r equ i r ed  i n  any d e f i n i t i v e  propuls ion  system des ign .  

3.7.4 Nacel le  Designs 

These cons is ted  e s s e n t i a l l y  of  t ak ing  t h e  engines  and gearboxes prev ious ly  

s e l e c t e d ,  coupling them wi th  the  p r e f e r r e d  i n l e t  and exhaust  systems and com- 

b in ing  them w i t h  f a i r e d  contours  t o  enc lose  t h e  o v e r a l l  s e l e c t e d  propuls ion  

system. Considerat ions o f  t h e  wing e f f e c t  on n a c e l l e  contouring and the  

close-out  geometry d i c t a t e d  by an  under-the-wing i n s t a l l a t i o n  are i l l u s t r a t e d  

and descr ibed  in  Sec t ion  4.7 of t h i s  r e p o r t .  Nacelle d rags  estimates were 

made us ing  convent ional  techniques  f o r  both f r i c t i o n  and p res su re  drags  

inc luding  t h e  super v e l o c i t y  e f f e c t s  i n  t h e  propfan wake. 

3.7.5 

A l l  turboprops must be  analyzed through dynamic ranges f o r  t h e  purposes 

Engine and Gearbox Dynamic Suspension 

of  reducing propuls ion system induced v i b r a t i o n  ( i s o l a t i o n  techniques)  as 

w e l l  as the  s a f e t y  a s p e c t s  f o r  w h i r l - f l u t t e r  s t a b i l i t y .  The engine systems 

and n a c e l l e  designs included i n  t h i s  r e p o r t  are a l l  be l ieved  t o  be capable  of 

l igh tweight  suspension dynamics i n  a des ign  program t h a t  inc ludes  t h e  f u l l  

aerodynamic c h a r a c t e r i s t i c s  o f  t h e  propfan and the  n a c e l l e  and wing e l a s t i c i t y  

va lues .  
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I t  i s  expected that the APET follow-on contract tasks w i l l  include some 

dynamic considerations, and e f f o r t s  w i l l  be made to identify some technical 

approaches t o  suspension dynamics that have the potential of major improvements 

re lat ive  to conventional elastomeric supports. 
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3.8 MISSION ANALYSES AND RESULTS 

A l l  s ix  APET a i r p l a n e s  ( t h r e e  turbofan powered and t h r e e  turboprop 

powered) were optimized i n  terms o f  gross weight ,  wing loading,  th rus t - to-  

weight r a t i o  f o r  the  des ign  miss ion  - 150 passengers  a t  a 1000 N. M i  range. 

Also each des ign  was optimized f o r  i t s  propuls ion  type and f o r  i t s  se l ec t ed  

f l i g h t  Mach number. 

Three measures o f  m e r i t  were considered;  f u e l  burn, a v a i l a b l e  seat mi l e s  

pe r  g a l l o n  (ASM/GAL) and d i r e c t  opera t ing  c o s t  (DOC). 

Off-design c h a r a c t e r i s t i c s  i n  terms of assumed a i r p l a n e  weight and range 

were a l s o  considered,  as  was a reduct ion  of the s e l e c t e d  aspect r a t i o  of 11 

down t o  9. 

A summary o f  t h e  po in t  des ign  a i rp l anes  f l y i n g  with a 65% load f a c t o r  

(LF) i s  presented on Table  3.8-1, while F igure  3.8-1 shows the  ASM/GAL va lues  

versus  range f o r  the  same LF. The design po in t  c a s e s  f o r  the  DOC of both the 

turbofan and turboprop a i r c r a f t  are depicted on Figure 3.8-2, where a l s o  are 

shown the  e f f e c t s  of  an  off-design case - t he  Mach 0.80 des igns  be ing  con- 

s t r a i n e d  t o  f l y  a t  a c r u i s e  Mach o f  0.70 and an  a l t i t u d e  comparison between 

ope ra t ing  a t  30 and 35 thousand f e e t .  

F igure  3.8-3 d e s c r i b e s  the levels, o r  s t e p s ,  o f  technology t h a t  are 

es t imated  to  take an a i r p l a n e  us ing  1972 weight technology and having a des ign  

range of 2000 N. M i  a l l  t he  way t o  the f i n a l  s e l e c t e d  va lues  of  t he  APET a i r -  

planes.  

Also as p a r t  o f  t h e  miss ion  results, estimates were made of t he  acous t i c  

s i g n a t u r e  of t h r e e  of t he  APET a i r p l a n e s .  These were: 

1. The Mach 0.80 Turbofan 

2. The Mach 0.80 Turboprop 

3. The Mach 0.70 Turboprop 

Using NASA and SAE d a t a  f o r  the propfan noise  and an  e s t a b l i s h e d  base from o t h e r  

sources  f o r  the  engine component noise  and a i r f r ame  no i se ,  the  t akeof f ,  cutback,  

s i d e l i n e  and approach no i se  levels were es t imated .  

i s  shown i n  Table 3.8-2. 

A summary of t hese  r e s u l t s  
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Table 3.8-1. APET Study R e s u l t s  - D e s c r i p t i o n  of APET 
Base l ine  A i r c r a f t .  

~~ 

Propulnion Type 

DeOign Mach N O .  

Denign Range (100% LP) - IMI 
rocy - lbs  
Uing Area - f t 2  
FnSLS - lba 

Prop. Dia. - f t  
Fuel Capacity - US Gal 
0.U.E - lbn 

Fuel Burn - 1000 mi (652 LF) 

SUP - hp 

Fuel Burn - 300 mi (65% Y) 
Afl l lGal  - 1000 mi (652 LP) 
ASHlGal - 300 mi (65% LF) 

Turboprop 

0.70 
1000 

107309 
932 

10720 
12.15 
3630 

63 120 

7063 
2799 

142.3 
107.7 

I- 

0.75 
1000 

108845 
903 

10998 
12.335 

3715 
64082 

7313 
2855 

137.4 
105.6 

-- 

MET AIRCRAPT FUEL EFFICIENCY 

lo00 NUMI Design Range 

652 Load Factor 

TP = Turboprop 
TF = Turbofan 

140 

120 

100 

E 
2 80 

9 
- . 2 60 

40 

0.80 
1000 

110986 
879 

11390 
12.55 
3820 

65488 

76 18 
2922 

131.9 
103.2 

--- 

0.70 
1000 

108036 
938 

15853 -- 
-- 

3950 
61692 

8204 
31 12 

122.5 
88.4 

20 

0 
0 500 1000 

Range - MI 

h r  bo fan 

. 7 H  

.75w 

.en 

.7n 

.75H 

.an 

Current High 
Bypeas Ratio 
Engine Aircraft 
(757-200, 767-200 
A310, DC9-80) 

0.75 
1000 

109305 
907 

16381 --- -- 
4020 

62483 

8397 
3458 

119.7 
87.2 

0.80 
1000 

111970 
929 

174 10 -- 
-- 

4 140 
64388 

8746 
3578 

114.9 
84 .3  

Figure  3.8-1. APET A i r c r a f t  Fuel E f f i c i e n c y  
1000 NMI Design Range 65% Load 
F a c t o r .  
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Table 3.8-2. APET A i r c r a f t  Noise Levels .  

1 

Condition 

Takeoff 

Cut Back 

Sideline 

I n  add i t ion  t o  f a r  f i e l d  n o i s e  e s t ima tes ,  va lues  were c a l c u l a t e d  for the  

sound p res su re  l eve l  a t  the  fuse l age  w a l l .  A cab in  w a l l  t ransmiss ion  l o s s  was 

then appl ied which determined an  "A" weighted i n t e r i o r  SPL. 

used and the  r e s u l t s  ob ta ined  are  d iscussed  i n  Appendix 11. I n t e r i o r  no ise  

l e v e l s  are est imated t o  l i e  w i t h i n  the  d e s i r e d  value of 82-84 EPNdB. 

The methodology 

0.8 Mach 0.8 Mach 0.7 Mach 
Turbofan Turboprop Turboprop 

TOGW = 111,970 lbs  TOGW 110,986 lbs  TOGw = 107,309 
FAR Estimated FAR Estimated FAR Estimated 

36 Level Margin 36 Level Margin 36 Level Margin 
(EPNdB) (EPNdB) (EPNdB) (EPNdB) (EPNdB) (EPNdB) (EPNdB) (EPNdB) (EPNdB) 

89.3 85.8 3.5 89.3 90.5 -1.2 89.1 90.2 -1.1 

89.3 85.3 4.0 89.3 88.9 0.4 89.1 88.7 0.4 

95.4 91.3 4.1 95.4 95.4 1.9 95.2 93.2 2.0 

It can be  noted from the  f a r f i e l d  va lues  presented i n  Table 3.8-2  t h a t  

t he  M E T  a i rp l anes  w i l l  a l l  m e e t  the  cu r ren t  (Stage 3 )  noise  r e g u l a t i o n s ,  

using cutback a t  t a k e o f f .  
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4.0 TOPICAL DISCUSSION OF THE STUDY 

4.1 GROUND RULES 

4.1.1 Study Procedures and Assumptions Document (Reference 23) 

The APET study technical analyses were preceded by the creation of an 
interim report with the above title. This report was submitted to NASA in 

April 1982, for approval by the Project Manager, which approval was duly 

obtained. The document outlined the methodology that would be used to analyze 

many of the technical parameters that were to be addressed and reported on 

throughout the study period. 

General Electric discussed the methods being proposed with three princi- 

pal Aircraft Design Companies to further ensure that a rational base set of 

assumptions would be followed by equally rational analytical efforts. Many of 

the suggestions made 'by these companies were followed where possible, although 

for some issues such as "Fuel Price Forecasting" General Electric elected to 

use in-house data and forecast values, while for others such as "propfan 

source noise," General Electric relied on data provided by Hamilton Standard. 

The following sections summarize the "Study Procedures and Assumptions 

Document" and for the interested reader the results of the analyses are con- 

tained within Sections 4.2 through 12, and in the three Appendices. 

4.1.2 Historical Survey 

In Section 2 (Introduction) of this report, Table 2-1 has summarized some 
of the larger twin-engined turboprop airplanes that have seen significant num- 

bers built and a large total of operating hours accrued in either military o r  

commercial service. Using conventional, current, technology levels for the 

airplane and engines it was postulated that the APET turboprop airplanes might 
weigh in the neighborhood of 130,000 pounds (TOGW) and require engines each of 

10,000 SHP for MCr equal 0.70 and 14,000 SHP for MCr equal 0.80. For the 

benefits in weight that were predicted due to advanced technology airplanes 

and engines, it was to be expected that these values might be reduced somewhat 
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through the  s tudy  a c t i v i t i e s .  The v a l u e s  being quoted h e r e  a r e  f o r  t he  150 

passenger s i z e  with a maximum payload/range po in t  designed f o r  1000 n a u t i c a l  

m i l e s .  

I n  o rde r  not t o  de l ay  t h e  design a c t i v i t y  s t a r t  po in t ,  General E l e c t r i c  

decided t o  design a "basel ine" sys t em a t  the  12,500 S W  l e v e l  and determine 

what a r e  the  va l id  s c a l i n g  f a c t o r s  f o r  t he  engines  and t ransmiss ion  systems 

. t h a t  r e s u l t  from changes (up  o r  down) from t h e  b a s e l i n e  l e v e l .  

The a i rp l ane  s i z e  (150 passenger) ,  t h e  des ign  m a x i m u m  payload range po in t  

(1000 n a u t i c a l  m i l e s ) ,  t h e  i n i t i a l  c r u i s e  a l t i t u d e  of 35,000 f e e t ,  t h e  runway 

l eng th  of 6,000 f e e t ,  p l u s  o t h e r  f a c t o r s  a f f e c t i n g  engine t h r u s t  and a i r p l a n e  

wing s i z i n g  were a l l  catalogued i n  an abbrevia ted  a i r p l a n e  s p e c i f i c a t i o n  t h a t  

was submitted to  NASA. 

Table 3.2-1 i n  the  Program Overview w i l l  not be dup l i ca t ed  he re .  

f o r  those  i n t e r e s t e d ,  a more d e t a i l e d  summary of h i s t o r i c a l  d a t a  on 2 and 4- 

engined turboprops i s  shown on Table 4.1-1, while  Figure 4.1-1 i s  included 

t o  show where the APET b a s e l i n e  was expected t o  l i e  a t  130,000 pounds TOGW and 

2 x 12,500 SNP propuls ion systems.  It i s  c l e a r  t h a t  t he  APET family of turbo- 

prop des igns ,  because of t h e i r  high c r u i s e  Mach number, a r e  i n  a c l a s s  t h a t  i s  

s u b s t a n t i a l l y  d i f f e r e n t  from previous experience.  

This  s p e c i f i c a t i o n ,  which has  a l r eady  been shown as 

However, 

4.1.3 Operating Costs 

Three methods of e s t ima t ing  Di rec t  Operating Cost (DOC) were exerc ised  

during t h e  APET s t u d i e s .  They were: 

1. Eurac method (Reference 31) 

2. 

3. NASA TM 80196 dated January 1980, "Computer Programs f o r  Est imat ing 

Boeing mod i f i ca t ion  of t he  ATA method (Reference 32) 

Civ i l  A i r c r a f t  Economics." (Reference 30) 

A l l  t h r e e  programs ou tpu t s  were compared when using i d e n t i c a l  i npu t s  and 

the  r e s u l t a n t  values  were judged t o  be very  s i m i l a r .  

t ance  by t h e  U.S. A i r l i n e  Indus t ry ,  t h e  Boeing modified ATA method, updated t o  

1981 economic parameters,  w a s  s e l ec t ed  f o r  t h i s  s tudy.  

Because of genera l  accep- 

Fuel p r i ce  fo recas t ing  f o r  t he  1990 t i m e  period r e l i e d  on d a t a  from a 

number of sources including Government Agencies, O i l  I ndus t ry  p ro jec t ions ,  and 
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Aircraf t  
Type 

Total  
I n s t a l l e d ,  

ShP 

CL44D4 

Bri tannia  320 

Vanguard 951 

Elec t ra  L l 8 8  

Viscount 800 

Convair 600 

NAXC YS-11 

HS 748 28 

HP Herald 700 

HS 748 Ser ies  2 

Fokker F-200 

No. PAX 

Table 4.1-1. H i s t o r i c a l  Summary Turboprop. 

TU 114 

No. Engines and 
Engine Type 

~~~ 

4 Kusnetsov 48000 220 4 14 ? 9000 

TOCW Maximum Payload 

XlOOO N. M i .  
lbs  1 Distance, 

4 Tyne 12 

4 Proteus 765 

4 Tyne 506 

4 All ison 501 

4 Dart 525 

2 Dart 542 

2 Dart 542 

2 Dart 536 

2 Dart 532 

2 Dart 531 

2 Dart 532 

22920 

17800 

19940 

15000 

6960 

6050 

6120 

4560 

4260 

4210 

4460 

160 

139 

115 

99 

71 

56 

60 

60 

60 

58 

48 

210 

185 

135 

116 

64.5 

57 

51.8 

46.5 

45 

44.5 

43.5 

29 00 

3620 

1800 

1400 

1120 

390 

770 

1367 

625 

1000 

16 10 

Russian Commercial Variant of "Bear" Bomber 

Maximum Distance 
Ful l  Fuel, 

N. M i .  
~~ 

4850 

4530 

2620 

2690 

1670 

695 -_ 

1725 

1867 

1675 

1180 

1610 
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Figure 4.1-1. Conventional Turboprop History. 



economic f o r e c a s t s  long used by t h e  General E l e c t r i c  Company. 

shows the  s c a t t e r  o r  v a r i a b i l i t y  tha t  r e s u l t s  from these  d a t a  sources .  Follow- 

ing d i scuss ions  with t h e  NASA program o f f i c e  it w a s  decided t h a t  a base p r i c e  

of a $1.50 per  ga l lon  i0 .50  would be used i n  the ensuing ana lyses .  

Figure 4.1-2 

Unit a i r c r a f t  flyaway p r i c e s  were proposed by d iv id ing  t h e  a i r c r a f t  i n t o  

two c a t e g o r i e s  : 

1. Airframe ( inc lud ing  Avionics) 

2. Propuls ion 

Est imat ing r e l a t i o n s h i p s  were devised t o  permit a i r f rame p r i c e  v a r i a t i o n  

as a func t ion  of s i z e  and f o r  t h i s  the d a t a  contained i n  the  following r e p o r t s  

was used: 

0 Douglas A i r c r a f t  Company, Inc.  r e p o r t .  (Reference 33) 

0 Society of Al l ied  Weight Engineers Paper.  (Reference 25) 

These d a t a  a r e  summarized i n  Figure 4.1-3. 

General E l e c t r i c  proposed t o  use in-house d a t a  f o r  engines ,  gearboxes,  

and n a c e l l e s  and Hamilton Standard da ta  f o r  t he  propfan and c o n t r o l s .  In-house 

d a t a  and methods were also t o  be applied t o  those  c o s t s  a s soc ia t ed  with mainte- 

nance a c t i o n s  and spare  parts p r i c ing ,  with t h e  except ion of t he  propfan where 

Hamilton-Standard d a t a  was used. 

4.1.4 Acoust ics  

General E l e c t r i c  considered two types of acous t i c  environmental  con- 

s t r a i n t s :  (1) those  t h a t  are based on r egu la t ions  i n  fo rce  a t  t he  time of t he  

s tudy (19821, and ( 2 )  those  t h a t  a r e  a n t i c i p a t e d  by 1995. 

For ( 1 )  above, FAR 36/Stage 3 )  is  app l i cab le  while f o r  (21 ,  guidance was 

sought from the  a c t i v i t i e s  of the I n t e r n a t i o n a l  C i v i l  Aviat ion Organizat ion 

(ICAO) under working group C ,  and a l so  some of t he  a c t i v i t i e s  repor ted  by t h e  

Socie ty  of Automotive Engineers (SAE) Committee A-21. These r e g u l a t i o n s  t h a t  

a r e  e i t h e r  i n  fo rce  or a r e  an t i c ipa t ed ,  apply t o  the  noise  l e v e l s  e x t e r i o r  t o  

the  a i rp l ane .  For i n t e r i o r  no ise  a c c e p t a b i l i t y  l e v e l s  i t  was proposed t h a t  

informal d i scuss ions  were held  with appropr i a t e  Government and Indus t ry  per- 

sonnel .  These d i scuss ions  determined t h a t  t h e r e  a r e  no mandatory requirements  
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Figure 4.1-2. APET Fuel Price Forecast. 

Figure 4.1-3. Estimating Airframe Unit Prices. 



t h a t  cove r s  i n t e r i o r  no i se  l e v e l s  and t h a t  t he  major commercial a i r c r a f t  

des ign  companies a c t u a l l y  n e g o t i a t e  t h e  l e v e l s  t h a t  are guaranteed t o  t h e  

customer v i a  t h e  a i r p l a n e  model s p e c i f i c a t i o n  t h a t  i s  be ing  proposed p r i o r  

t o  a sale. Because of t h i s  l a c k  of a mandatory requirement i t  w a s  thought 

t h a t  i n t e r i o r  n o i s e  l e v e l s  o f  82-84 dBA would appear t o  s a t i s f y  t h e  s tudy  

o b j e c t i v e .  

4.1.5 Emissions 

The c u r r e n t  s t anda rds  f o r  newly c e r t i f i e d  l a r g e  engines  have been i ssued  

by t h e  U.S. Environmental P ro tec t ion  Agency (EPA) and cover pe rmis s ib l e  l e v e l s  

o f  HC, CO, NO,, and smoke number for engines  above 8,000 pounds t h r u s t  as 

published i n  the  Federal  Reg i s t e r  dated J u l y  17,  1973. 

developed p resc r ibed  c y c l e s  f o r  emissions c a l c u l a t i o n s  which a l l o c a t e  f ixed  

time l e v e l s  f o r  t he  t a x i - i d l e ,  t akeof f ,  c l imbout ,  and approach p a r t s  of t h e  

f l i g h t  regime. On March 24, 1978, some proposed r e v i s i o n s  t o  t h e  ea r l i e r  

p u b l i c a t i o n  were contained a s  a Notice of Proposed Rule Making (NPRM) where 

S I  u n i t s  were introduced f o r  t he  new s t anda rds .  Table 4.1-2 provides  t h e  cur- 

r e n t  s t anda rds  f o r  newly C e r t i f i c a t e d  l a r g e  engines and Figures  4.1-4 and -5 

i l l u s t r a t e  the  smoke emission standards t o  be m e t  by t u r b o j e t l t u r b o f a n  engines  

and turboprop  engines  r e s p e c t i v e l y .  Table 4.1-3 summarizes the  r e g u l a t i o n s  o f  

time-in-mode a t  percent r a t e d  power while Table 4.1-4 summarizes t h e  r e v i s i o n s  

proposed f o r  p a r t i c u l a t e  emissions and Smoke Number i n  I n t e r n a t i o n a l  Standard 

Uni t s .  

The EPA a l s o  has  
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Time ,  
minutes 

Table 4.1-2. Current  Standards - Newly C e r t i f i e d  Large Engines. 

Power, 1 T i m e ,  I Power, 
percent  minutes pe rcen t  

(Federa l  Reg i s t e r  - J u l y  17 ,  1973) 

26 

0.7 

2.2 

HC 

co 
NOx 

Smoke No. 

* 
10 0 

85 
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26 

0.5 
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4.5 
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(Fig.  4 .1-4)  
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10 0 

90 

30 
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A 1  1 Turboprop 
Eng i n e  s 

4.9+ 

26.8+ 

12.9' 
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Table 4.1-3. Current  EPA Prescr ibed  Cycles f o r  Emissions 
Ca lcu la t ions .  

Time-in-Mode a t  Percent  Rated Power 

Mode 

Taxi- I d  l e  

Takeoff 

C 1  imbou t 

Approach 

~~~ 

Turbojet/Turbofan Engines I Turboprop Engines 
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4.2 THE M E T  AIRPLANE 

4.2.1 Configurat ion and S ize  Se lec t ion  

The MET a i r p l a n e  i s  an advanced technology commerical 150 passenger s i z e  

des ign  which could be introduced in to  s e r v i c e  c i r c a  1995. There are t w o  bas ic  

s e r i e s ,  each of which has  th ree  v a r i a n t s .  These two  s e r i e s  are: 

1. A turbofan  powered a i rp l ane  with 7.5 bypass r a t i o  engines  i n s t a l l e d  
i n  Long Duct Mixed Flow (LDMF) n a c e l l e s  

2. An advanced turboprop powered a i r p l a n e  with Hamilton-Standard 10 

bladed propfans d r i v e n  by high-pressure r a t i o  tu rbosha f t  engines .  

The t h r e e  v a r i a n t s  a r e  t h e  r e s u l t s  of t h e  v a r i a t i o n  of t he  des ign  c r u i s e  Mach 

number which w a s  set a t  Mz0.70, 0 . 7 5  and 0.80. A l l  t h e  des igns  are of conven- 

t i o n a l  low wing layout  with engines  i n s t a l l e d  on the  wing. A l l  t he  a i r p l a n e s  

a r e  twin engined. 

Overa l l  design goal  i s  t o  keep the  a i r c r a f t  weight t o  a minimum, which 

i s  c o n s i s t e n t  with the  f u e l - e f f i c i e n t  performance goa l s  t h a t  a r e  the ob jec t  

of t h i s  study. 

t h e  des ign  s t a g e  l eng th  f o r  maximum payload i s  s e t  a t  1000 n.  m i l e s .  The 

s e l e c t i o n  of t h e  APET des ign  s t a g e  length  has  a l s o  been discussed i n  Sec t ion  

3.2, 'where a number of f a c t o r s  have been enumerated and d isp layed  t o  show the  

reasons  chosen f o r  t he  s i z e  and missions of t h e  APET a i r p l a n e s .  

Consequently, a s  indicated i n  the  In t roduc t ion  (Sec t ion  2)  

A i r c r a f t  des igns  were c rea t ed  using a d a t a  base l a r g e l y  composed of NASA 

c o n t r a c t o r  r e p o r t s .  Ea r ly  i n  the  design process ,  some d i f f e r e n t  prel iminary 

des ign  groups were b r i e f e d  on assumptions being used. 

and sugges t ions  received during these b r i e f i n g  se s s ions  were u t i l i z e d  t o  

improve the  des ign  process  and t o  produce a more c r e d i b l e  des ign .  

t i n g  s e r i e s  of des igns  i s  f e l t  t o  be r e p r e s e n t a t i v e  of  a des ign  capable of 

i n i t i a l  ope ra t ion  i n  the  1990's.  

Many of t he  comments 

The resu l -  

The fuse lage  con ta ins  a passenger cabin  having a s i n g l e  a i s l e  layout  

with a l l - t o u r i s t ,  s ix-abreas t  seat ing.  Seat p i t ch  of 32 inches  has  been 

se l ec t ed  f o r  cons is tency  with t h e  opera t iona l  s h o r t  haul  r o l e .  Gal ley ,  lava- 

t o r y  and o t h e r  s p e c i a l i z e d  passenger ameni t ies  are h e l d  t o  a minimum of bulk  
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s i z e  and weight - a l s o  c o n s i s t e n t  with short-haul opera t ion .  

cargo space i s  r e s t r i c t e d  t o  an allowance f o r  passenger luggage p lus  space 

f o r  up t o  5000 pounds of cargo.  

provis ions  f o r  f l i g h t  a t t e n d a n t s  a r e  included.  These des ign  o b j e c t i v e s  r e s u l t  

i n  a fuse lage  which i s  c i r c u l a r  i n  c ross -sec t ion  with a diameter  of 154 inches  

and o v e r a l l  length of 117 f e e t  6 inches.  F igures  4.2-1 and 4.2-2 are included 

t o  show t h e  a i rp l ane  3-views f o r  t he  turbofan  and turbopropfan powered a i r -  

p lanes  respec t ive ly .  

s u i t a b l e  f o r  MCR of 0.80 i n  both cases .  

Underfloor 

1 
I 
I 
I 
u 
I 
I 

0 S t r u c t u r a l  weight I 

I 
8 
1 
1 
U 
I 

A two-crew cockpi t  i s  assumed and s tandard 

The f i g u r e s  are r e s t r i c t e d  t o  the  competi t ive a i r p l a n e s  

A "family" of wings has  been c rea t ed  t o  match the  c r u i s e  Mach number 

s e l e c t i o n  and these  a r e  shown i n  Figure 4.2-3. 

have the  i d e n t i c a l  aspec t  r a t i o  of e leven .  

form f o r  each Mach number and the  a r e a  w a s  s e l ec t ed  a f t e r  computer s y n t h e s i s  

of t h e  optimum wing loading.  Wing planform i s  s e l e c t e d  t o  provide space f o r  

landing gear  when r e t r a c t e d .  Spanwise v a r i a t i o n s  of thickness-to-chord r a t i o  

It may b e  noted t h a t  a l l  wings 

The wing family has  a f ixed  plan- 

were chosen t o  be a compromise among seve ra l  p e r t i n e n t  cons ide ra t ions  includ- 

ing : 

0 Drag i n  c r u i s e  mode 

0 Fuel volume 

0 Landing gear  s to rage  

All wings achieve performance l e v e l s  a s soc ia t ed  with s u p e r c r i t i c a l  aero- 

dynamics. 

s t r u c t u r a l  box, inc luding  t h a t  po r t ion  of wing i n  the  fuse lage  carry-through 

region.  

All a i r c r a f t  f u e l  i s  c a r r i e d  i n  i n t e g r a l  t anks  wi th in  the  wing 

Figure 4.2-4 p re sen t s  a 3-view of  t h e  propfan-powered a i r c r a f t  designed 

f o r  0.7 Mach number. 

T a i l  design i s  convent ional .  Horizontal  t a i l  s i z e  i s  based on a t a i l  vol-  

ume c o e f f i c i e n t  c o n s i s t e n t  with t h e  t y p e  of f l a p  system used, and i s  a l s o  based 

on the  use of a re laxed  c r i t e r i a  f o r  s t a b i l i t y  and c o n t r o l  employing a n e u t r a l  

type s t a t i c  margin. V e r t i c a l  t a i l  s i z i n g  i s  based p r imar i ly  on the e f f e c t s  of 

yawing moments caused by engine out  - asymmetric t h r u s t  cond i t ions .  

hinged rudder systems a r e  not used, a l though they may make an e f f e c t i v e  t r a d e  

Dual- 
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AFXT WING PLANFORM FAMILIES 

- v - 
AREA (SQ ?'T) 1250 1000 850 1250 1000 850 1250 1000 850 
SPAN (FT) 117.3 104.9 96.7 117.3 104.9 96.7 117.3 104.9 96.7 

MACH NO . 7  

ASPECT RATIO 11 
TAPER RATIO .20 
ROOT t/C .20 

WING BREAK t/C . I 8  
TIP tlC .IS 

SWEEP (Xc/4)-Deg 100 
.75 
200 
11 
.20 
. I 8  
.131 
.I23 

.8  
27O3Oo 
11 
.20 
.144 
.I10 
.IO1 

Figure 4 . 2 - 3 .  APET Wing Planform Families. 
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study e s p e c i a l l y  f o r  t he  propfan propulsion system. 

matic  r e p r e s e n t a t i o n  of t he  r e l a t i o n s h i p s  t h a t  have been used i n  s i z i n g  the  

t a i l  s u r f a c e  a reas .  

Figure 4.2-5 g ives  a sche- 

The se l ec t ed  landing gear  is  of convent ional  des ign  i n  t h a t  t he  nose 

gear  r e t r a c t s  forward i n t o  the  bottom fuse lage  and the  main gear  r e t r a c t s  

sideways i n t o  an a r e a  a f t  of the  wing box i n  wing and t h e  fuse l age ,  below t h e  

passenger f l o o r .  Standard s i z e  c r i t e r i a  a p p l i e s  t o  wheels, t i r e s  and brakes 

and an an t i - sk id  system would be standard as a l s o  would be the  use of carbon- 

carbon brakes hea t  s ink  ma te r i a l .  

f o r  t he  turbofan  powered a i r p l a n e  compared t o  the  turbopropfan powered a i r -  

plane and gear  weights are adjusted accordingly.  

Landing gear  l eng th  i s  computed d i f f e r e n t l y  

Obviously t h e r e  a r e  s u b s t a n t i a l  d i f f e r e n c e s  i n  the  s e l e c t i o n  of n a c e l l e  

des igns  f o r  the  two competing propulsion systems and these  a r e  discussed i n  

d e t a i l  i n  Sec t ion  4.7 of t h i s  repor t .  It s u f f i c e s  t o  s a y  he re  t h a t  t he  para- 

meters  used t o  l o c a t e  the  turbofan  nace l le  a r e  convent ional  and t h a t  t he  tur -  

bopropfan n a c e l l e s  l o c a t i o n  use a compromise between: 

0 

0 Engine-out asymmetric t h r u s t  

cab in  no i se  (and assoc ia ted  a d d i t i o n a l  a c o u s t i c  t reatment  weight) 

0 

(The 1 x P e x c i t a t i o n  f a c t o r  is a product  of uneven d i s t r i b u t i o n  

of flow through t h e  propfan ac tua to r  disk. It is  exh ib i t ed  as a 

c y c l i c  f o r c e  app l i ed  t o  t h e  propfan d r i v e  s h a f t  g iv ing  rise t o  c y c l i c  

bending moments.) 

Propfan t i p  t o  wing clearance f o r  low 1 x P e x c i t a t i o n  f a c t o r s .  

Estimated n a c e l l e  drag c h a r a c t e r i s t i c s  included i n  the  a i r p l a n e  perform- 

ance a n a l y s i s  a r e  a l s o  discussed i n  Sec t ion  4.7. 

4.2.2 Aerodynamic Assumptions and C r i t e r i a  

The APET a i r p l a n e  aerodynamic assumptions and c r i t e r i a  a r e  convent ional  

with t h e  p o s s i b l e  except ion of t he  s u p e r c r i t i c a l  a i r f o i l  s e l e c t e d  f o r  a wing 

with an AR of e leven .  Drag l e v e l s  a r e  based on s k i n - f r i c t i o n  and form drag 

va lues  t h a t  a r e  exh ib i t ed  by current  t r a n s p o r t  a i r c r a f t  des igns .  A time 

sha r ing  computer program has been used t o  c a l c u l a t e  the  drag of t he  va r ious  

components ( i . e . ,  wing, fu se l age ,  t a i l ,  e t c . ) .  Nacel le  drag i s  included i n  

the  c a l c u l a t i o n  although i n  the  bookkeeping system used i n  t h i s  s tudy ,  

drag was deb i t ed  t o  t h r u s t  produced i n  the  engine performance computer 

programs. 

n a c e l l e  

93 



- 

1.1  

94 

HORIZONTAL TAIL 

3 . 5  

TH = Horizonta l  t a i l  S 

- 

0.7 
vV 

0 

VERTICAL TAIL 

0' 

- 
X = Spanwise loc 

0' 

1 thrust  line 
. of 

0.4 

a r e a ,  f t 2  

lTH = Dis tance  of 1 / 4  chord of h o r i z o n t a l  t a i l  
from a i r c r a f t  c e n t e r  of g r a v i t y ,  f t  

2 Sw = Wing area, f t  

Macw = Wing Mean Aerodynamic Chord, f t  

= L i f t  Coe f f i c i en t  w i th  f l a p s  a t  landing  C 

LDG p o s i t i o n  %ax 

'TV = Vertisal T a i l  Area, f t  2 

'TV = V e r t i c a l  T a i l  Length, f t  

b = Wing span,  f t .  

n = Thrust  of one engine a t  takeoff  power F 
*2M a t  0.2 Mach f l i g h t  speed,  pounds 

X = Distance of t h e  t h r u s t  l i ne  from t h e  
a i r c r a f t  fu se l age  c e n t e r l i n e ,  f t  

- 

W = Takeoff g ross  weight ,  pounds 
0 

Figure 4.2-5. T a i l  S i z ing  C r i t e r i a .  
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speed drag  estimates f o r  second-segment climb c a l c u l a t i o n s  have been based on 

a r e l a t i o n s h i p  curve of L/D/ 

book, "Synthesis  of Subsonic Airplane Design," (publ i shed  i n  D e l f t  i n  1976) 

as updated by r e c e n t  NASA da ta .  A p re sen ta t ion  of t h e s e  parameters  is included 

as Figure  4.2-6 which provides  t h e  data f o r  t h e  v a r i a t i o n  i n  t h e  expected 

APET a i r p l a n e  climbout drag  characteristics as t h e  wing f l a p  ang le  s e l e c t i o n  

i s  a l s o  v a r i e d .  The va lues  f o r  a i r c r a f t  low-speed drag  obta ined  from t h e  

f i g u r e  r ep resen t  second-segment climb cond i t ions  w i t h  symmetric powerplant 

ope ra t ion .  For purposes of engine  s i z i n g ,  i n  second-segment engine-out 

conf igu ra t ion ,  a d d i t i o n a l  drag  w a s  es t imated f o r  windmil l ing engines  o r  

f ea the red  p r o p e l l e r  and f o r  t h e  d e f l e c t e d  f l i g h t  c o n t r o l s  necessary  t o  main ta in  

s e l e c t e d  heading. 

Overa l l ,  i t  i s  be l ieved  t h a t  t h e  aerodynamic assumptions and c r i t e r i a  are 

vs CL/ =p resen ted  by Torenbeek i n  h i s  

~ ~ - 

r e p r e s e n t a t i v e  f o r  t h e  quoted t ime period and may w e l l  be improved on as more 

advanced concepts  and technologies  find t h e i r  way i n t o  f u t u r e  product ion com- 

merc ia l  a i r p l a n e s .  I n  any even t ,  t h i s  s tudy  shows t h a t  f o r  equ iva len t  a i r -  

frame technology assumptions for both t h e  turbofan  powered a i r p l a n e  and t h e  

turboprop fan powered a i r p l a n e  t h e  d i f f e r e n c e  i n  a i r c r a f t  performance i s  v i r -  

t u a l l y  a cons t an t  a t  i d e n t i c a l  ranges. Thus, t h e  abso lu te  va lues  used i n  the  

aerodynamic assumptions are of l e s s e r  s i g n i f i c a n c e  than  the  n e c e s s i t y  f o r  

ensur ing  comparable technology l e v e l s  f o r  the  two  competing propuls ion  systems. 

Although t h e  se l ec t ed  aspec t  r a t i o  of e leven  i s  high i n  comparison t o  cur- 

r e n t  a i r c r a f t  wi th  swept wings, i t  was considered t o  be  a r e a l i s t i c  va lue  f o r  

an advanced, p o s t  1990, a i r p l a n e  design.  Unusual f e a t u r e s  such as n a t u r a l  l a m i -  

n a r  f low wings, "winglets",  o r  cranked wings have not been used; and t h e  objec- 

t i v e  is c l e a r l y  t o  improve t a k e o f f ,  climb and c r u i s e  s p e c i f i c  f u e l  consumption 

v a l u e s  wi th in  a comparat ively simple framework of  advanced technology. 

The h igh  l i f t  systems use  f l a p  conf igu ra t ions  t h a t  are based on r e c e n t  

NASA Airframe Cont rac tor  s t u d i e s  and t y p i c a l l y  e x h i b i t  maximum CL levels of 

2.5 and 3.5 f o r  t h e  takeoff  and landing c o n f i g u r a t i o n s ,  r e s p e c t i v e l y .  Low 

Buffe t  l i m i t s  f o r  c r u i s e  opera t ions  are based on a compi la t ion  of f l i g h t  

d a t a  on 15 subsonic  t r a n s p o r t  and m i l i t a r y  cargo  a i r c r a f t .  

a n a l y s i s  are presented i n  Figure 4.2-7.  

c r u i s e  ope ra t ing  cond i t ions .  

Curves used i n  

The normal 0.3g margin i s  assumed f o r  
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SFetric Flight - Flap Setting Varies-Turbofan Aircraft 

6.0 

5.0 

4 . 0  

3.0 

2.0 

(L’D)@V2 - Aircraft lift to drag ratio vith 
takeoff flap setting, all engines 
operating at the minimum allowable 
climbout speed. Landing gear 
retracted, synunetrical flight. 

AR - Wing aspect ratio. 
CL @ V2 - Operational lift coefficient. etc. 

. 3  .4 . 5  .6 

Figure 4.2-6.  APET Aircraft Low-Speed L/D Characteristics. 

Cruise Flight - Straight and Level 
cL 

1.0 

.9 

.8 

. 7  

0 Design Point 
Off -Design 

.6 I I I I I I I 
.2  . 3  .4 . 5  .6 .7 .8 .9 1.0 

Flight Mach No. 

Figure 4.2-7. APET Assumed Buffet Limits. 
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4.2.3 Performance Objec t ives  

The gene ra l  ground r u l e s  discussed i n  Sec t ion  4 . 1  are combined with 

d e f i n i t i v e  a i r c r a f t  s p e c i f i c a t i o n s  and l i s t e d  i n  Table 4.2-1. 

losophy w a s  t o  d e f i n e  an advanced technology a i r c r a f t  ope ra t ing  under f l i g h t  

and economic cond i t ions  as are known today (i .e. ,  runway l eng ths ,  c e r t i f i c a -  

t i o n  requirements ,  speed l i m i t s  and s t a g e  l eng ths ) .  A s p e c i f i c  requirement 

w a s  t h e  ful l -payload des ign  s t a g e  length and t h i s  w a s  chosen t o  be 1,000 N. 

m i l e s .  

The b a s i c  phi- 

The N E T  a i r c r a f t  w a s  designed t o  t h i s  b a s i c  s t a g e  length .  

Table 4.2-1. APET A i r c r a f t  Study Guidel ines .  

A i r c r a f t  Technology/Thing - 
Maximum Number of Passengers  - 
Passenger Arrangement 

D e s  ign Range Capab i 1 i t  y 

Average Stage Length 

F i e l d  Length (Sea Level)  

A l t e r n a t e  F i e l d  Length 

( F u l l  Payload) 

Engine-Out Ce i l ing  

Design Cruise  Mach Number 

Required Cruise  Al t i t ude  

Maximum Approach Speed 

Number of Engines 

Engine Locat ion  

Propuls ion  Types 

Cruise  SpeedlAl t i tude  

Capab il i t  y 

Takeoff Gross Weight 

Wing Design 

Wing Aspect Rat io  

Measures of Merit 

Se rv ice  I n t r o d u c t i o n  a f t e r  1990 

150 

A l l  T o u r i s t  Class, Six-Abreast, 32" P i t c h  

1000 N M i  

300 N M i  

6000 F t  (Sea Level)  a t  Maximum TOGW 

Denver (Hot Day); Weight f o r  T r i p  t o  
San Franc isco  (100% LF) 

15,000 F t  

Varies: 0.7 t o  0.8 

35,000 Ft  - Design Range Mission 

135 K t s .  ( A t  MLW = 0.975 x Maximum TOGW) 

2 

On Wing 

Turbofan and Turboprop (Propfan)  

W i l l  Vary with Design Mach and Stage 
Length 

Var iab le  (Fall-Out) 

Sweep and Thickness Varies wi th  Design 
Mach 

11 (For  A l l  Values of Design Mach No.) 

Maximum TOGW 
Fuel  Burn a t  300 N M i  Stage Length 
DOC a t  300 N M i  Stage Length 
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The "basic" s t age  l eng th  choice i s  s i g n i f i c a n t .  A very  long s t a g e  length  

( r e l a t i v e  t o  PAX and Cargo) provides  f l e x i b i l i t y  i n  extending t h e  a i r c r a f t  t o  

high revenue through f l i g h t s .  However the  b u i l t - i n  weight p e n a l t i e s  f o r  t h i s  

c a p a b i l i t y  reduce revenue on the  more popular (high load f a c t o r )  s h o r t  range 

f l i g h t s .  

t h e  most economically v i a b l e  a i r c r a f t  would have a "basic" range of 1000 N. 

m i l e s  w i th  high usage i n  t h e  300 N. m i l e  s t a g e  l e n g t h  range. Using t h e  maximum 

load  "basic" range of 1000 N. m i l e s  as an  a i r c r a f t  des ign  c r i t e r i a  sets t h e  

f u e l  capac i ty  and weight of t h e  a i r c r a f t .  

from f u e l  e f f i c i e n c y  enhances t h e  f l e x i b i l i t y  of t h e  a i r c r a f t .  A s  shown i n  

F igu re  4.2-8, a 1000 N.M. A/C can have a p r o f i t a b l e  ope ra t ion  i n  t h e  300-1000 

N. m i l e  range a t  f u l l  c a p a c i t y  wi th  a "return t o  base'' o r  supplemental  r o u t e  

c a p a b i l i t y  of approximately 2500 N .  m i l e s  wi th  a 65 percent  payload. 

A study of c u r r e n t  and p a s t  North American A i r  t r a f f i c  i n d i c a t e s  t h a t  

The off-design performance r e s u l t i n g  

F l i g h t  Crew (2) 
Cabin C r e w  (4) 
C r e w  Baggage 
Br i e fcases  
Food, Beverages 
Food Serv ice  Equipment 
Pot ab l e  Water 

Mise. Cabin Equipment 
Wash Wa t e t  

l T o i l e t  Chemicals 

l Emergency Equipment 
1 Unusable Fuel 

1 Bins f o r  Baggage 
Engine O i l  

Assuming the  "Basic" 300-1000 m i l e  du ty  c y c l e  passenger  ameni t ies  and 

s e r v i c e s  can be sca l ed  down a p p r o p r i a t e l y  ( a s  opposed t o  a 4 h r .  t r a n s -  

c o n t i n e n t a l  f l i g h t ) .  The b a s i c  OEW I t e m s  assumed f o r  t . h i s  purpose are shown 

i n  Table 4.2-2. 
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Table 4.2-2. APET OEN Items - 150 PAX. 
(Pounds) 

34 0 
520 
130 

50 

1100 

15 0 
40 

300 

300 
250 
170 
750 

4100 
- 

I 
1 
I 
8 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



I 
I 
I 
I 
l 
I 
I 
I 
1 
I 
I 
I 
1 
I 
1 
I 
I 
I 
I 

Payload 
- l b s  

40,000 

30,000 

20,000 

10,000 

0 

APET BASELINE AIRCRAFT 
Propfans - Design Mach = 0.8 

Max. T O W  = 110990 l b  

0 Max Payload (ZFW Limited) - 34402 l b  

@ 
@ 
@ 
@ 
@ 
ZFW = Zero F u e l  Weight 

Design Payload - 150 Pax - 30750 l b  

Design Range - w i t h  150 Pax 

Payload - 65% LF (98 Pax) - 20090 l b  

Range Capab i l i t y  @ 65% LF 

Fuel Capaci ty  - 3820 U. S. Gal. 

I Range Evalua t ion  
I I Point  

I I 
I I 

I I I I 

300 N. Mi. 1000 2 000 

Range - N. M i .  

I 

3000 

Figure  4.2-8. APET Baseline A i r c r a f t  Propfans - Design 
Mach = 0.8. 
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A perspec t ive  of assumed 1995 APET technology r e l a t i v e  t o  e s t a b l i s h e d  

technology i s  i n  order .  

of technology r e l a t i v e  t o  t h e  se l ec t ed  APET a i r p l a n e  parameters.  

Table 4.2-3 enumerates t h e  magnitude and chronology 

Percent Fuel Burn Percent 
Reduction 1000 "1 Reduction Engine A i r f r u  Airframe Denign 

Technology Aero Weight Range TOCS In TOW (652 LF) i n  Fuel Burn 

CP6 A n - 9  1972 2000 155606. 12949' 
>7.7 >18.0 

>1.8 > 3.7 
"APCT" M - 9  1972 2000 143583 10613 

Table 4.2-3.  Technology Study E f f e c t s  of Varying Technology Assumptions. 

Fuel Burn Percent 

(652 LF) Fuel Burn 
300 NU1 Reduction in 

5335' 
>18.2 

> 2.6 
4361 

3 

4 

5 

"APFT" M 11 1972 2000 140860 10131 4222 
W.6 > 7 . 1  > 7.6 

>8.9 > 3 .6  > 4 . 5  
"APgT" An' 11 1995 2000 125823 9212 3018 

'"ET" AR 11 1995 1000 llZOO0 8749 3579 

*Baacline Values for Percentage Calculationn I 
An obvious ques t ion  asked i n  eva lua t ing  "advanced" technology i s  "what i s  

r e a l ? "  Absolute l e v e l  of f u t u r e  e n t i t i e s  i s  d i f f i c u l t  t o  assess. However, r e l -  

a t i v e  changes on a common base i s  a r e a l i s t i c  p l ace  t o  s ta r t .  Table 4.2-4 com- 

pares  turboprop ve r sus  turbofan  technology ga ins  on a cu r ren t  ( o l d )  technology 

b a s i s  and an  advanced technology b a s i s  (new). 

i s  t h a t  n e i t h e r  t h e  turbofan  o r  t h e  turboprop have been awarded an advantage,  

r e l a t i v e  t o  each o t h e r ,  i n  advanced technology t h a t  they do not have i n  cur- 

r e n t  technology (based on the  parameter of Fuel  Burn). 

The s i m p l e  s ta tement  of t h i s  t a b l e  

Technology Level 
Used 

"1972" Weights 
AR = 9 "Old" 
Design Range = 2000 N M I  

"1995" Weights 
AR = 11 "New" 
Design Range = 1000 NMI 

Table 4.2-4,  APET A i r c r a f t  Technology. 

0 Effec t  on Comparison of Turboprop Versus Turbofan 

Fuel Burn 
TOGW Ratio* 
Ratio* (R = 300)  

0.987 I 0.815 

0.992 0.817 

I I 

Turboprop 
Turbofan 

*Ratios a r e  based on I 
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‘ I  
1 
1 
I 
I 
, I  
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
1 

Table 4.2-5 summarizes t h e  ca l cu la t ed  aerodynamic c h a r a c t e r i s t i c s  of a 

0.8 M M E T  a i r c r a f t .  These are general  and o f f e r e d  as an o r d e r  of magnitude 

type  r e p r e s e n t a t i o n .  They are based on eva lua t ion  of f l i g h t  test  d a t a  f o r  

o t h e r  r e a l  a i r c r a f t .  

Table 4.2-5. APET Drag C h a r a c t e r i s t i c s .  

Design Uach No. 

Wing Sweep - degrees  

Average Wing (tic) 

Wing Aspect Rat io  

Wing Area 

P l igh t  Uach lo. 

cDO 

k 

Typical  Cases - Propulsion S y s t a  l o t  I n s t a l l e d  

0.8 * 

n L ”. - 
11 * 
900 900 900 1000 1000 1000 1130 1130 1130 

0-0.70 0.75 0.80 0-0.70 0.75 0.80 0-0.70 0.75 0.80 

0.01914 0.1914 0.0201 0.01819 0.01819 0.0191 0.01724 0.01724 0.0181 

0.0432 0.0445 0.0551 0.0432 0.0445 0.0551 0.0432 0.0445 0.0551 

t 0  0.1 b 

CD - c~~ K (CL - c ~ ~ ) ~  

‘Do = Airplane drag c o e f f i c i e n t  a t  CL = ‘Lo. 

‘Lo - Airplane l i f t  c o e f f i c i e n t  for defining the  drag polar o f f s e t .  

k = The induced drag f a c t o r .  

A f t e r  t h e  payload and economic cons ide ra t ions  have been resolved t h e  

a c t u a l  procedure of s i z i n g  a i r c r a f t  wing and engine must occur .  

matical methods have been with us  . f o r  yea r s ,  t h e  c r i te r ia  and procedures va ry ,  

w i t h i n  l i m i t s ,  r e l a t i v e  t o  r egu la t ions  and manufacturer .  

4.2-10 s t a t e  the  c r i t e r i a  used f o r  wing and propuls ion  system s i z i n g .  

items are a r e s u l t  of Government regula t ions  and a concensus of a i r c r a f t  manu- 

f a c t u r e r s ’  s ta tement  of requirements.  

The mathe- 

F igures  4.2-9 and 

These 

The procedure,  once the  c r i te r ia  are de f ined ,  i s  mathematical ly  complex 

b u t  f u l l y  understood. Thrust-to-weight v e r s u s  wing-loading r e l a t i v e  t o  t h e  

des ign  c r i t e r i a  are c a l c u l a t e d  (Figure 4.2-211, t h i s  addresses  s a f e t y  concerns.  

T/W v e r s u s  wing-loading and f u e l  burn and TOGW ve r sus  wing-loading and t h r u s t -  

to-weight address  economic concerns,  (F igu re  4.2-12). 

are d i r e c t l y  c o n v e r t i b l e  t o  d o l l a r s .  

i n  Table 4.2-6. 

Fue l  burn and weight 

The summary of  s i z e s ,  p o i n t s  a r e  shown 
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Factors  Af fec t ing  Choice of Wing S i z e  (Wing Loading) 

0 Takeoff F i e l d  Length 

0 Second-Segment Climb Gradien t  

0 Enroute Engine-Out Climb Gradien t  

0 Landing F i e l d  Length 

0 Limi t ing  Value of Approach Speed 

0 Buffe t  L imi t s  (Cruise)  

0 Wing Fuel Volume 

0 Wing Weight 

F igure  4.2-9. APET Wing S i z i n g  Criteria.  

Thrust  w i l l  be Sized for: 

0 Takeoff F i e l d  Length - 6000 Fee t  - Sea Level (ISA + 27"  F>.* 

0 Denver F ie ld  Length (OAT = 92" F>.* 

0 

0 

Enroute Engine-Out C e i l i n g  - 15,000 Fee t  ( I S A  + 18" F ) .  

End of Climb Thrus t  Required (ISA + 18" F) - Thrus t  Margin 
f o r  300 fpm R a t e  of Climb. 

"Also m u s t  meet second-segment climb g r a d i e n t  requirements.  

Note - Engine-Out S iz ing  Conditions Inc lude :  

A i r c r a f t  Symmetric Drag - Low Speed (With High L i f t  Devices) 
- High Speed (Clean) 

Windmil l i n g  Drag ( O r  Feathered Drag) 

RudderIAileron Drag. 

I 
I 
I 
I 
I 
I 

Figure  4.2-10. APET Engine S iz ing  Criteria.  
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Sea L e v e l  Takeoff 

Denver Takeoff 

Enroute Ceiling - Engine Out 

End of Climb Thrust 

Fuel Volume L i m i t  

Approach Speed L i m i t  

Buffet L i m i t  - C r u i s e  

100 100 120 130 

WO1SU’ - PSf 

Figure 4.2-11. APET Aircraft Design Typical Engine and Wing Sizing 
Study Design Mach Number = 0.8 Propfan Propulsion. 

Propfan - design Mach - 0.8 

Sm/DZ = 37.5  

SHP - Shaft horsepower 
D - Propfan diameter. f e e t  

.25 .26 . 2 7  . 26  

116 

114 

n 5 112 
0 

5 
E 
- 

110 

108 

- Lbcus of combinations which 
meet a l l  sizing l i m i t s  
(Wing & Engine) 

OSelected Design 

.25 .26 .:7 .28  

WFB - Weight of fue l  burned, pounds 

T/W - Aircraft Thrust t o  Yeight r a t i o  
TIU C .W/SL T/U @ .2U/SL 

Figure 4.2-12. APET Design - Sizing Study. 
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Table  4.2-6. M E T  A i r c r a f t  S i z ing  Resu l t s .  

Powerplant Type 

Design Mach no. 

a l e c t e d  tuo/%) 

Selected F,, Wo e 0.2M/SL 
Wing Sized By: 

Engine Sized By: 

Resulting Mcw 

Design Mission - 1000 NMI 

L 

Prop fan 

0.7 0.75 

115.2 120.5 

0.261 0.264 

Buffet Buffet 

Dcnver TO Denver TO 

107309 108845 

0.8 

126.2 

0.268 

b e l  Capacity 

Denver TO 

110986 

0.1 

115.2 

0.235 

Buffet 

Dcnver TO 

108036 

Turbofan 

0.75 

120.5 

0.240 

Buffet 

Denver TO 

109305 

0.8 

120.6 

0.249 

Fuel Capacity 

Denver TO 

111970 

4.2.4 Performance Computer Programs 

The a n a l y s i s  descr ibed  i n  t h e  preceding s e c t i o n s  was performed using t h e  

G.E. miss ion  ana lys i s  computer program. This  program i s  capable  of c a l c u l a t -  

ing  miss ion  performance.of e i t h e r  t u r b o j e t ,  t u rbo fan  o r  turboprop t r a n s p o r t  

a i r p l a n e s  f o r  the fol lowing modes of ope ra t ion :  

Takeoff ( f u e l  allowance only)  

Constant a l t i t u d e  a c c e l e r a t i o n  

Constant Mach number climb 

Constant a l t i t u d e  and Mach number c r u i s e  

Constant Mach number climb t o  optimum Breguet crui 'se a l t i t u d e  

Constant a l t i t u d e  and Mach number c r u i s e  a f t e r  d i scont inuous  change 
i n  a l t i t u d e  and Mach number 

Breguet c r u i s e  

Constant a l t i t u d e  d e c e l e r a t i o n  
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0 

0 Constant Mach number descent 

0 Maneuver mode (used f o r  reserves)  

The nondimensional a i r c r a f t  drag c h a r a c t e r i s t i c s  (drag  po la r )  and weight 

A matrix of engine performance d a t a  (ne t  t h r u s t  

Decelerated descent  along q = f (XM2) path 

are inpu t t ed  t o  t h e  program. 

as a func t ion  of a l t i t u d e  and Mach number) i s  run on the  cyc le  deck and placed 

i n  a f i l e .  This  f i l e  i s  read by the  miss ion  program. 

The miss ion  program " f l i e s "  a "rubber" a i r p l a n e .  That i s ,  a i r c r a f t  

weight,  engine weight and engine t h r u s t  are ad jus ted  ( sca l ed )  t o  match t h e  

miss ion  requirements .  The output  of t h e  miss ion  program ( a i r c r a f t  weight ,  

f u e l  burn)  r e f l e c t  t h e  complex i n t e r a c t i o n  o f  engine t h r u s t  - SFC charac te r -  

i s t i c s  and a i r c r a f t  des ign .  

The computer program i s  also capable of determining t h e  e f f e c t s  of small  

changes and, hence,  can be used t o  obta in  s e n s i t i v i t y  f a c t o r s .  

As a r e s u l t  of r e c e n t  in-house commercial a i r c r a f t  s t u d i e s ,  a sys temat ic  

computerized approach f o r  execut ing  t h e  miss ion  a n a l y s i s  por t  ion of t h i s  s tudy 

has  been devised.  F igure  4.2-13 descr ibes  t h e  gene ra l  work flow and i d e n t i -  

i npu t s  and cons ide ra t ions  t h a t  were included i n  the  s tudy.  

r a t h e r  s t ra ight forward  and g e n e r a l l y  does not involve i tera- 

f ies the  v a r i o u s  

The work flow i s  

t i v e  loops.  

Propul sion 

7 

Ecomics Type Lapse 
Control Sched . Rate 
Cycle Data Variations I rc - 
neights D.O.C. 
Installations 
costs "Mission Analysis' 

Design 

C m a r i  sons 

Conclusions 

Case Flight M i  ss ions 
Calculations Aircraft kl ect i on Path 

Design 
T.O.G.W. "Thudprint" 
Fuel Burn 
Unit Costs 

Clinb 
Cruise A l t .  

Wing Platforn Cruise M 
Thrust Loading 
Wing Loading 

Figure 4.2-13. Study Work Flow. 
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4.2.5 Weight Es t imat ing  Procedures 

A i r c r a f t  main assembly, component, system and subsystem weights have been 

e s t ima ted  using formulae t h a t  have, f o r  c u r r e n t  technology l e v e l  commercial 

a i r c r a f t ,  provided r e l i a b l e  answers i n  prev ious  s t u d i e s .  The methodology of 

de te rmining  the  p ro jec t ed  (lower) weights f o r  a post-1990 s ta te -of - the-ar t  

a i r p l a n e  is  a two-step process .  F i r s t ,  c u r r e n t  a i r c r a f t  weights have been 

e s t ima ted  f o r  the s i z e  c l a s s  of t h e  APET a i r p l a n e  by using a base  from pub- 

l i s h e d  d a t a  of e x i s t i n g  a i r c r a f t  types  as conta ined  i n  Reference 33. Where 

necessary ,  the formulae i n  t h i s  r e p o r t  have been modified t o  r e f l e c t  a d d i t i -  

ona l  a v a i l a b l e  d a t a  on the commercial a i r p l a n e s  and have a l s o  been supple- 

mented by o t h e r  formulae t o  cover subsystems not conta ined  i n  t h e  published 

r e p o r t  ( e .g . ,  passenger f u r n i s h i n g s  and OWE i t ems) .  

formulae se rves  t o  p r e d i c t  what might be  c a l l e d  "1972" weight technology. 

This  r e s u l t a n t  group of 

The second s t e p  concerns t h e  weight r e d u c t i o n  f a c t o r s  t h a t  could be assumed 

t o  r e f l e c t  t h e  weight changes t o  be expected as advanced technology i s  p ro jec t ed  

i n t o  a i r p l a n e  designs of t h e  1995 t i m e  per iod .  

i nc lude  such items as :  

This technology w i l l  t y p i c a l l y  

0 S u p e r c r i t i c a l  wing technology 

0 Advanced aluminum a l l o y s  

0 Composite m a t e r i a l s  i n  non-primary s t r u c t u r e s  

0 Advanced manufacturing processes  

0 Advanced a v i o n i c s  and on-board computers 

0 Advanced system, component and subsystem des igns .  

The weight reduct ion  f a c t o r s  s e l e c t e d  f o r  t h i s  s tudy  are shown i n  Table 4.2-7, 
and were based on surveys  of published d a t a  and were modified a f t e r  d i s c u s s i o n s  

with t h e  p r i n c i p a l  a i r f r ame  des ign  companies. The f a c t o r s  shown are be l ieved  

t o  provide some reasonable  but cha l l eng ing  goa l s  f o r  t h e  a i r p l a n e s  of t h e  1995 

t i m e  per iod .  

Furn ish ings  and equipment weights have been h e l d  t o  a minimum by using 

passenger accommodations with comfort l e v e l s  between t h o s e  c u r r e n t l y  used by 

commuter a i rcraf t  and those  now used by t runk  a i r l i n e s  and a l s o  b e  reducing 

and/or omi t t i ng  c e r t a i n  equipment now requ i r ed  f o r  long-haul ope ra t ions  ( b u t  

I 
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I 
I 
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Table 4.2-7. A i r c r a f t  Component Weight Est imat ion.  

Componentlsystem 

Wing - Bending S t r u c t u r e  
Wing - Shear and Other S t r .  
T a i l  
Fusel age 
Landing Gear 
Fuel System 
F l i g h t  Controls - Hydraulics 
E l e c t r i c a l  
Pneumatics and A i r  Cond. 
Anti-Icing 
Instruments 
Avionics 
Furn ish ings  
OWE Items 

(1) Reference Weight 

Base 

I 

(1) "1972 Techology" - - 
- 

Represents Technology of 727/737/DC9, e t c .  
Data base from S.A.I./Douglas Report 
(NASA CR-151970) (Ref 33) 
S.A.I./Douglas Formulas - Modified by G.E. 

(2) "1995 Technology" - Represents APET Technology - Estimated using S.A.I./Douglas d a t a  base 
with Weight Reduction Factors - 2X Weight Contingency added - Austere passenger furnishings and 
accommodations (because a i r c r a f t  i s  
used on shor t  s t age  lengths).  

( 3 )  A l l  E l e c t r i c  Airplane 

(2)  Weight Reduc t ion 
Fac tors ,  

(Est .  1 

0.9 
0.8 
0.85 
0.90 
0.9 

3 3 )  
1 ,0(3)  

1.2(3) 
0.8(3) 

1.0 
0.75 
0.9 
1.00 

not  needed f o r  short-haul  opera t ion) .  

t w o  i n  the cockpi t  crew and four  i n  t h e  cabin.  

been based on use  of two l a v a t o r i e s  and two g a l l e y s .  Cabin f u r n i s h i n g  e s t i -  

mates have been e x t r a c t e d  from a data  base  which inc ludes  only  short-haul  a i r -  

c r a f t  (F28, 737, 727, etc. .) .  Cabin fu rn i sh ings  inc lude  a b a s i c  amount of 

a c o u s t i c  t rea tment  material  s u i t a b l e  f o r  a turbofan a i r c r a f t .  

A crew of 6 persons has  been assumed - 
Cabin f u r n i s h i n g s  weights have 

By concen t r a t ing  on the  "short-haul" a spec t s  t h e r e  can be some reduc t ion  

and i n  some cases  omissions of weight i t e m s  t h a t  would normally b e  included a t  

100 percent  f a c t o r s .  Overall t h e  Operational Weight Empty (OWE) i s  es t imated  t o  

be i n  the  84 t o  85 percent  band compared with today ' s  equ iva len t  a i r p l a n e  r a t e d  
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a t  100 pe rcen t .  

and o t h e r  factors m u s t  be introduced t o  account f o r  t h e  d i f f e r e n c e s  requi red  

f o r  turboprop power. 

These va lues  apply d i r e c t l y  t o  t h e  tu rbofan  powered a i r p l a n e  

Three o f  the weight items which are d i f f e r e n t  when the  propfan i s  used 

are : 

Landing Gear 

V e r t i c a l  Ta i l  

Acoustic Treatment (More, due t o  d i f f e r e n t  no i se  c h a r a c t e r i s t i c s )  

(General ly  longer  and h e a v i e r )  

(Genera l ly  l a r g e r  area and h e a v i e r )  

Propfan weights which inc lude  the  b l ades ,  hub,  p i t c h  change mechanism, 

c o n t r o l s  and an t i - ic ing  f e a t u r e s  have been d i r e c t l y  taken  from Hamilton- 

Standard parametr ic  weight d a t a  packages. Gearbox and engine weights  have 

been genera ted  t w o  ways. One is  a parametr ic  method us ing  in-house computer 

programs while t h e  o t h e r  involves  producing a l ayou t  drawing and conver t ing  

t h i s  v i a  computer v i s i o n  t e rmina l s  i n t o  weight d a t a .  

weights a l s o  used a combination of paramet r ic  and d i r e c t  c a l c u l a t i o n s .  

Nacelle and systems 

Engine weights are c a l c u l a t e d  by a computer program t h a t  i s  d i r e c t l y  

l i nked  t o  t h e  design program. 

whenever d e t a i l  engine des igns ,  o r  new engine  hardware i s  developed and phys- 

i c a l l y  weighed. 

i n  numerous commercial and m i l i t a r y  engine s t u d i e s .  

Weights a r e  modif ied i n  the  computer system 

These programs have s tood t h e  tes t  of t i m e  and have been used 

For t h e  mission ana lyses  programs, i t  w a s  necessary  t o  estimate t h e  

weight breakdown of  each of t h e  s i x  b a s e l i n e  a i r p l a n e s  - t h r e e  turbofans  and 

t h r e e  turboprop fans  a t  des ign  c r u i s e  Mach numbers of 0.70, 0.75 and 0.80. 

One of t hese  weight breakdowns i s  g iven  as a t y p i c a l  example i n  Table 4.2-8 

f o r  t he  Mach c ru i se  0.80 turbofan  powered a i r p l a n e .  

f i v e  a i r c r a f t  are  g iven  i n  F igure  3.8-1 (a l r eady  shown). Elsewhere i n  t h i s  

report, (See Section 4.8 of t h i s  r e p o r t )  t he  f u l l  range of t h e  v a r i a t i o n  i n  

Takeoff Gross  Weights (TOGW) i s  g iven  i n  t a b u l a r  form f o r  t h e  s i x  poin t  des ign  

a i r p l a n e s .  

Weight d a t a  f o r  t h e  o t h e r  
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Table 4.2-8. APET - Typical  Weight Buildup. 

0 

0 "1995" Weight Technology 

Turbofans - 0.8M Design Load 

Wing 

T a i l  

Fusel age 

Landing Gear 

Propuls ion ( I n s t a l l e d )  

Fuel System 

F l i g h t  Controls  

Elect t i ca l  

A i r  Condi t ioning,  APU 

Ant i- I c  ing  

Furnishings and Eq. (TF) 

Added Cabin Acoustics 

Instruments  

Avionics 

Loading and Handling 

M i  s c  e 1 1 aneou s 

Calculated Empty Weight 

Contingency (24, of Airframe Wt) 

Empty Weight 

OWE I t e m s  

OWE 

Passengers (150) 

Cargo 

Fuel (Design Range) 

TOGW 

Pounds 

9987 

1247 

14850 

44 68 

9372 

639 

1417 

2540 

2375 

265 

9653 

0 

553 

1793 

0 

133 

(59292) 

996 

(60288) 

4100 

64388 

30750 

0 

16832 

111970 
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4.3 REFERENCE TURBOFAN ENGINE 

4.3.1 D e f i n i t i o n  

A b a s e l i n e  APET tu rbofan  engine has been designed with technology assump- 

t i o n s  be l i eved  v a l i d  f o r  s e r v i c e  in t roduc t ion  i n  t h e  year  1995. 

A s  prev ious ly  d i scussed ,  t h e  APET t u rbo fan  i s  based on a scaled-down ver- 

s i o n  of t h e  E3 F l i g h t  Propuls ion  System (FPS) engine,  i n  an e q u i v a l e n t l y  

scaled-down n a c e l l e .  Figure 4.3-1 shows t h e  gene ra l  layout of t h e  des ign  and 

inc ludes  n o t a t i o n  t h a t  h i g h l i g h t s  the major d i f f e r e n c e s  from t h e  f u l l - s c a l e  

FPS system. Figure 4.3-2 i s  included t o  show t h e  similarities, and t h e  d i f -  

f e r ences  where they e x i s t ,  between t h e  f u l l  and sub-scale systems. 

The E3 tu rbofan  ( f u l l  s c a l e )  engine compression system employs a s i n g l e  

s t a g e  f a n ,  s i n g l e  s t a g e  boos te r  wi th  continuous bypass b leed  ( d r i v e n  by a 

5-stage LP t u r b i n e )  p r e s s u r i z i n g  a LO-stage a x i a l  compressor d r iven  by a 

2-stage HP t u r b i n e .  

gas used f o r  d r i v i n g  both sets of t u r b i n e s  and f o r  mixing wi th  t h e  bypassed 

f a n  a i r f low.  A h igh  e f f i c i e n c y ,  low de l ta  p r e s s u r e ,  advanced technology mixer 

exhaus t s  the  t o t a l  engine flow v ia  a common p r o p e l l i n g  nozz le .  

A low smoke, low emissions burner  des ign  s u p p l i e s  t h e  ho t  

I n i t i a l  a i r p l a n e  and propuls ion  s i z i n g  s t u d i e s  showed t h a t  t he  r equ i r ed  

c h a r a c t e r i s t i c  t h r u s t  s i z e  d i c t a t e d  a c y c l e  match poin t  at t h e  end of climb, 

a t  maximum climb power. Th i s  match point y i e l d s ,  f o r  Mach 0.80 f l i g h t  speed, 

35,000 f t .  a l t i t u d e  on a Standard Day + 18” F,  a t h r u s t  l e v e l  of 4000 pounds. 

The’ demonstrated c o r e  performance of t he  f u l l - s c a l e  E3 engine has  been 

s e l e c t e d  as a t a r g e t  va lue  f o r  t h e  s i g n i f i c a n t l y  smaller co re  s i z e  of t h e  APET 

Turbofan. (APET i s  approximately 47 percent  of t h e  f u l l - s c a l e  E3. )  Th i s  tar-  

g e t  i s  d i f f i c u l t  to achieve when s c a l i n g  a h i g h l y  e f f i c i e n t  set of components 

down t o  a smaller flow s i z e ;  and i n  o r d e r  t o  make the  goa l ,  c e r t a i n  component 

e f f i c i e n c y  va lues  need t o  be improved t o  o f f s e t  t h e  r educ t ion  i n  e f f i c i e n c y  

t h a t  r e s u l t s  from t i p  c l e a r a n c e  lo s ses  and Reynolds number e f f e c t s .  The com- 

ponent assumptions t h a t  are made between E3 and APET are a l s o  shown i n  F igu re  

4.3-2 where i t  may be noted t h a t  t he  number o f  LP t u r b i n e  s t a g e s  has  been 

113 

PAGE \\%-INTENTIONALLY BLANK 



I 
I 
I 
I 
I 
1 
I 
II 
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0 c y c l e  Parameters a t  M0.80/35000' + 18' M,CL 

PR Fan T ip  = 1.55 

PR Fan Hub = 1.75 
PR Core = 23.0 

PR Overall = 40.2 

BPR = 7.1 
Turbine Temp. = 2258?2490' F (M,CI/Denver) 

0 Conf igura t ion  - Mixed Flow 

1 Stage Fan 

1 Stage Booster with Continuous Bleed 

10 Stage Core 

2 Stage HPT 

6 Stage LPT 

0 Component Assumptions Re la t ive  t o  GE E3 FPS Cycle 

Fan rl = +1.2% 

Core rl = No Change I n  F u l l  

E3 Size  HPT = +0.2% 

LPT = +0.8% 

ACooling A i r  = -2.35 P t s  

0 Component S izes  

For 4000 l b  MxCl Thrust  10.8/35K + 18") 
- Fan WJm = 728 

- BPR = 7.1 SLS FN = 17600 lb 
- Core WJm = 56.6 

Figure  4.3-2. Reference APET Turbofan Descr ip t ion .  
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increased  from t h e  f i v e  (used on t h e  full-scale E3) t o  s i x  on t h i s  sca led  

ve r s ion. 

For t h i s  t h r u s t  s i z e ,  us ing  t h e  s c a l e d  E3 components, a p re l imina ry  des ign  

w a s  made f o r  an engine  wi th  a f a n  diameter  of 59.6 i nches  and a flow of 731 

pounds/second. These and o t h e r  d a t a  inc lud ing  a weight breakdown are shown 

i n  F igu re  4.3-3. 

The nominal t u rbo fan  powered a i r p l a n e  f o r  MCR = 0.80 i s  as shown i n  Fig- 

ure  3.1-1. I n s t a l l a t i o n  f a c t o r s  f o r  an i s o l a t e d  tu rbofan  engine are w e l l  

known and need not  be amplif ied i n  t h i s  s tudy  r e p o r t ;  however, i t  is  important 

t o  no te  t h a t  some on-the-wing e f f e c t s  have been excluded by NASA d i r e c t i o n .  

This  exc lus ion  w i l l  a l s o  apply t o  some of t h e  f a c t o r s  f o r  the  turboprop, as  i s  

ampl i f ied  l a t e r  i n  t h i s  r e p o r t .  

Fan Dia. = 59.6 inches  Basic Engine Weight = 3103 l b  
Length = 90.0 inches  Mixer and Reverser = 615 l b  

I n s t a l l a t i o n  = 735 l b  

* 

Pylon 

Length i s  de f ined  as Fan Rotor lead ing  

engine rear frame. 

* 

Figure 4.3-3. APET Basel ine Turbofan - 

= 445 

4898 l b  

edge t o  a f t  f lange  of 

Weight and Dimens ions .  

For t h e  case of t h e  tu rbofan  i n s t a l l a t i o n ,  t h e r e  i s  no u n i v e r s a l l y  accept-  

a b l e  c r i te r ia  f o r  e s t ima t ing  t h e  incrementa l  d rag  from i s o l a t e d  t o  a f u l l y  

i n s t a l l e d  propuls ion nacelle, e s p e c i a l l y  f o r  t h e  long duc t  mixed flow config-  

u r a t i o n  be ing  used as t h i s  s tudy ' s  base l ine .  

i n s t a l l a t i o n ,  it appears  a p p r o p r i a t e  t h a t  these incrementa l  e f f e c t s  be  added a t  

some la ter  poin t  i n  t i m e .  The ongoing NASA-Ames wind tunne l  program i s  showing 

dramat ic  drag  improvements wi th  wing l ead ing  edge ex tens ions ,  wing-to-nacelle 

f i l l e t s  and contoured n a c e l l e s  (non-axisymmetric). C e r t a i n l y  i t  seems t h a t  t h e  

For t h e  c a s e  of t h e  turboprop 
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turboprop increment can be he ld  t o  a v a l u e  t h a t  i s  s i m i l a r  t o  t h e  tu rbofan  with 

t h e  p rocess  of re f inements  t h a t  are being a c t i v e l y  explored by NASA and t h e i r  

I n d u s t r y  Con t rac to r s .  

The tu rbofan  i n s t a l l a t i o n  loss bookkeeping system i d e n t i f i e d  a 3.6% t h r u s t  

loss due t o  t h e  nacelle f r i c t i o n  drag wi th  a f u r t h e r  0.7% loss f o r  t h e  p re s su re  

drag .  

they  are a l s o  f o r  t h e  turboprop i n s t a l l a t i o n .  

The i n l e t  and exhaust l o s s e s  a r e  bookkept i n  t h e  engine c y c l e  format as 

The f i n a l  APET tu rbofan  engine s i z e s  f o r  t he  t h r e e  d i f f e r e n t  c r u i s e  Mach 

numbers cons idered  are summarized on F igure  4.3-4 where fan  and co re  engine 

c o r r e c t e d  a i r f l o w  as w e l l  as f a n  diameter and i n s t a l l e d  t h r u s t  are shown f o r  

each c r u i s e  Mach number s tud ied .  

0.70 0.75 0.80 

u 

4.8 

0.70 0.75 0.80 

0 F @ M = 0.2  n n 
r-l 0 SL 

141g2 

13 X 

12 r4 
0.70 0.75 0.80 

0.70 Q. 75 0.80 
Cruise Mach No. 

F igure  4.3-4. Fina l  APET Turbofan Engine Sizes.  
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4.4 APET TURBOSHAFT ENGINES 

4.4.1 Candidate Engines and Descr ip t ions  

S i x  cand ida te  tu rbosha f t  engines  were def ined  and a pre l iminary  des ign  

w a s  completed f o r  each. The des ign  process  used c a l c u l a t e s  t h e  f lowpath from 

given  i n p u t  cyc le  parameters  and determines cas ing  conf igu ra t ion ;  number of 

s t a g e s  r equ i r ed ;  b l ade  t o  vane a x i a l  spacing;  numbers of  b l ades  and vanes 

r equ i r ed ;  burner  conf igu ra t ion ;  frame and bea r ing  and s h a f t i n g  l a y o u t s .  A l l  

t h e  engines  have been designed t o  produce 12,500 SHP a t  SL s t a t i c  cond i t ions .  

The computer programs provide  d a t a  i n  a form t h a t  a l lows  r a p i d  des ign  d e f i n i t i o n  

by drawings and automated c a l c u l a t i o n  of bo th  weight and c o s t s .  

programs are c o n t i n u a l l y  be ing  r e f ined  by comparison t o  experimental  and pro- 

duc t ion  engine hardware and have been e x t e n s i v e l y  used i n  o t h e r  commercial and 

m i l i t a r y  s t u d i e s .  Table 4.4-1 lists t h e  p r i n c i p a l  c h a r a c t e r i s t i c s  of  t h e  s i x  

cand ida te s  examined wh i l e  F igures  4.4-1 through -6 show t h e s e  engines  d r i v i n g  

a b a s e l i n e  propfan r educ t ion  gearbox and propfan.  A l l  t h e  engines  are  enclosed 

w i t h i n  a n a c e l l e  contour  t h a t  inc ludes  a s i n g l e ,  o f f s e t ,  i n l e t  duc t  as t h e  

sou rce  of a i r  supply.  

These computer 

The o r i g i n a l  engine d e f i n i t i o n s  matched t h e  f u l l - s i z e  E3 engine i n  c y c l e  

p r e s s u r e  r a t i o ;  and a l l  were s i z e d  t o  produce 4000 l b .  of t h r u s t  (wi th  t h e  

s e l e c t e d  propfan)  a t  Maximum Climb Power, 35,000 f t .  a l t i t u d e ,  Mach 0.80 f l i g h t  

speed, and a f r e e  a i r  ambient temperature of Standard Day + 18' F. 

l a p s e  r a t e  d i f f e r e n c e s  and a range of temperature  r a t i n g s  s t u d i e d ,  t h e r e  w e r e  

s i g n i f i c a n t  d i f f e r e n c e s  i n  s h a f t  horsepower t r a n s m i t t e d  through t h e  p r o p e l l e r  

gearbox t o  t h e  propfan. I n  o r d e r  not t o  de l ay  t h e  process  of p re l imina ry  

des ign  f o r  t h e  gearbox and t h e  nace l le /engine  i n s t a l l a t i o n ,  i t  w a s  decided t o  

f i x  a b a s e l i n e  va lue  of  12,500 SHP a t  t h e  propfan d r i v e  f a c e .  In terms of 

SHP a t  t h e  engine ou tpu t  s h a f t  (boos te r  f r o n t  frame s t a t i o n ) ,  t h i s  equa te s  

t o  approximately 13,000 SHP engine d e l i v e r y  power l e v e l .  Note t h a t  approxi- 

mately 300 gearbox horsepower i s  reserved f o r  d r i v i n g  a i r f r a m e  a c c e s s o r i e s  

wh i l e  a f u r t h e r  l o s s  occur s  due t o  i n e f f i c i e n c y  i n  t h e  d r i v e  system i t s e l f .  

Thus, when us ing  t h e  computer deck and t h e  s c a l i n g  l a w s  f o r  APET eng ines ,  i t  

is  e s s e n t i a l  t o  n o t e  t h a t  t h e  SHP produced by t h e  deck i s  a t  t h e  engine  s h a f t  

b e f o r e  i t  powers t h e  propfan gearbox. 

Because of 
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Table 4.4-1. Candidate Turboshaft Engines. 

Engine 

Des c r  i p  t i on  

Unboos t ed 
2 Shaft 

Boosted 
2-Shaft 

Boosted 
2-Shaft 

Boosted 
2-Shaf t 

Boosted 
2-Shaf t 

Boosted 
3-Shaft 

~ 

Low Pressure  

Compressor 

Stages 

-0- 

1, high  r / R  

2, low r / R  

1, h igh  r/R 

2, low r / R  

2, l o w  r/R 

High Pressure  

Compressor 

Stages 

10 Axial 

10 Axial 

10 Axial  

5 Axial 
1 Cent r i fuga l  

5 Axial 
1 Cent r i fuga l  

10 Axial  

HP Turbine 

Stages 

Lp Turbine 

Stages 

3 

3 

3 or 4 

3 

3 or 4 

* 

Overa l l  

Pressure  

R a t  i o  

23: 1 

38: 1 

38: 1 

38: 1 

38: 1 

38: 1 

* This  engine used a s i n g l e  s t age  HP t u rb ine ,  a s i n g l e  s t a g e  in te rmedia te  tu rb ine ,  

and a 3-stage LP tu rb ine  a c t i n g  t o  d r i v e  the  t h i r d  s h a f t  as a f r e e  tu rb ine .  
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This  va lue  of 13,000 SHP then  f a l l s  halfway between t h e  lower end of t h e  

NASA d e s i r e d  s tudy  l e v e l  of 8,000 SHP and t h e i r  d e s i r e d  upper end va lue  of 

18,000 SHP. 
down s c a l i n g  exponents used f o r  t h e  p r inc ipa l  elements of t he  propuls ion 

system. 

This  s e l e c t i o n  thus  gives  e x t r a  c r e d i b i l i t y  t o  both t h e  up and 

Temperature lapse  rates and r a t i n g s  have been s e l e c t e d  f rom s t u d i e s  t h a t  

determined t h a t  on ly  a s m a l l  d e l t a  value between take-off and end of climb 

should be used t o  hold the  co re  engine s i z e  t o  minimum va lues ,  and 100' F 

has  been used i n  a l l  l a t t e r  p a r t s  of the  M E T  s h a f t  engine s tud ie s .  

4.4.2 

From t h e  s i x  candida te  turboshaf t  engines ,  NASA s e l e c t e d  engines  2(b)  and 

Both these  se lec ted  engines  have the  low r a d i u s  r a t i o  

Se lec t ed  Study Engines and Cycles 

3 (b )  f o r  f u r t h e r  s tudy.  

2-stage boos te r  arrangement with Variable  I n l e t  Guide Vanes (VIGV'S) and are 

p ro jec t ed  t o  achieve optimum performance when the  boost  pressure  r a t i o  i s  set 

a t  1.75. The o v e r a l l  p re s su re  r a t i o  of t he  machines i s  then  r a i s e d  from t h e  

b a s e l i n e  38:l t o  j u s t  over 4 0 : l  a t  f u l l  co r rec t ed  speed. It i s  not  c e r t a i n  a t  

t h i s  t i m e  whether a 3-stage o r  a 4-stage LP t u r b i n e  would be s e l e c t e d  as prime; 

and i t  i s  recommended i n  the  component development p lan  shown l a t e r  i n  t h i s  

r e p o r t  t h a t  a s i g n i f i c a n t  e f f o r t  should be made t o  des ign  and t e s t  h igh- f la re  

low p res su re  t u r b i n e  l ayou t s  employing or thogonal ly  d i r e c t e d  b lade  a i r f o i l s ,  

a t  a power s i z e  t h a t  would lead  c red ib ly  t o  t h e  es tab l i shment  of t he  requi red  

technology. The 4-stage des ign  arrangement e f f i c i e n c y  p r o j e c t i o n s  have been 

used throughout t h i s  s tudy  f o r  t h e  determinat ion of t h e  engine cyc le  perfor-  

mance. 

Both engines  are heav i ly  dependent on t h e  core  technology a l r eady  demon- 

s t r a t e d  i n  the  NASA/GE E3 program with engine 2(b)  being even more dependent 

than  engine 3 (b )  i n  t h i s  regard .  

two-stage boos te r  technology t h a t  has been previous ly  demonstrated on the  

NASA/GE J l O l / V C E  demonstrator engine programs. 

Both engines  are e q u a l l y  dependent on t h e  

Engine 3 (b )  's high-pressure compressor i s  based on experimental  work 

accomplished a t  Lynn on smaller power s i z e  tu rbosha f t  engines .  The T700 
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t u rbosha f t  engines and t h e  CT7 commercial turboprop engines  a l l  employ axi-  

c e n t r i f u g a l  compressor arrangements - pr imar i ly  t o  achieve ruggedness i n  t h e  

h ighes t  p ressure  s t a g e  of t he  compressor. 

engines ,  GE has  developed an experimental  compressor with a. s imi l a r  axi- 

c e n t r i f u g a l  engine conf igu ra t ion  t h a t  has  demonstrated a p re s su re  r a t i o  of 

22:l a t  i t s  design speed. 

GE27 engine proposal  f o r  t h e  MTDE* compet i t ion) .  The GE27 a t  5000 SHP, is  

then  j u s t  less than h a l f - s c a l e  of t h e  proposed APET engine  3 ( b ) ,  and t h e r e  

would be  a h igh  level of confidence i n  t h e  a b i l i t y  t o  upsca le  t h e  f low s i z e  

t o  t h a t  requi red  by t h e  APET engine,  and main ta in  h igh  e f f i c i e n t y .  

In a d d i t i o n  t o  t h e s e  product ion 

(This  compressor arrangement w a s  included i n  the 

The se lec ted  engines  are r a t e d  equal  i n  the  development of bo th  HP and LP 

t u r b i n e  e f f i c i e n c i e s  t o  m e e t  t h e  goa l s ,  and t u r b i n e  technology programs would 

thus  equa l ly  app ly .  

i n  t h e  combustor s t a g e ,  b u t  high e f f i c i e n c y  combustors have a l r eady  been demon- 

s t r a t e d  a t  a smaller scale s i z e .  

Engine 3 (b )  has  a more d i f f i c u l t  set  of des ign  problems 

Overall, e i t h e r  engine would be equa l ly  r a t e d  i n  t h e i r  a b i l i t y  t o  produce 

the  power l e v e l s  and e f f i c i e n c i e s  being quoted i n  t h i s  r e p o r t  and o t h e r  f a c t o r s  

than  those  considered i n  t h i s  s tudy  would swing t h e  s e l e c t i o n  from one t o  the  

o t h e r ,  i n  a f i n a l  choice  f o r  an a i r p l a n e  development program. 

These two engines a r e  shown i n  F igure  4.4-7 [APET 2 (b ) l  and Figure  4.4-8 

[APET 3 ( b ) l .  

t e r i s t i c s  of each are included i n  the  f i g u r e .  It may be noted t h a t  bo th  

engines  shown include 4-stage low p res su re  power t u r b i n e s  - which configura-  

t i o n s  were used i n  the  e s t ima t ion  of engine performance, weight and c o s t .  

Three-stage low p res su re  t u r b i n e  arrangements w e r e  a l s o  designed and t h e  

M E T  (2b) engine w i t h  t h i s  t u r b i n e  has  been inc luded .  S e e  F igure  4.4-9. 

As may be  noted on t h i s  l a t te r  f i g u r e ,  e s t i m a t i o n  of f u e l  b u m  and DOC 

f o r  t h i s  conf igu ra t ion  is  shown t o  be i n f e r i o r  t o  the  engine shown i n  F igure  

4.4-7 so i t  w a s  dropped from f u r t h e r  s t u d i e s .  

Engines 2(b) and 3 (b )  were then  drawn a t tached  t o  a " re feree"  o f f s e t  gear- 

The f i g u r e s  show engine c r o s s  s e c t i o n s  and t h e  p r i n c i p a l  charac- 

box, and enclosed wi th in  a n a c e l l e  which employs a s i n g l e ,  o f f s e t ,  a i r  i n l e t  

scoop t o  supply t h e  engine i n l e t .  The n a c e l l e  conf igu ra t ion  shown has  a r ad ius  

* MTDE i s  t h e  - Modern Technology Development - Engine. 
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Core Power Turbine 

VTipI f i  924 Scaled E3 P I P  = 7.6 

PR = 1.75 PR 1 2 3  

- Booster 

r l  r = .67 VTiplfi 14% h A v g  .% 

Figure 4.4-7. APET Turboprop Gas Generator Axial Flow Compressor 
Four Stage Power Turbine. 

Core (PQA = 23) Power Turbine 

v T i p / f i  924 Axial - VTipI f l  14% P I P  = 7.6 

PR * 1.75 Centrifugal - v T i p I f i =  1407 

PR = 3.23 

Booster 

r l  r * .67 PR = 7.12 @PA, .% 

Figure 4.4-8. APET Turboprop Gas Generator Axi-Centrifugal Compressor 
Four-Stage Power Turbine. 

133 



Re1 to @ Stage LPT, AVLPT = - 1.52, AFB = t1.52, ADOC = +0.8% 1 

Booster 

r / r  = .67 

PR * 1.75 

Core 

Scaled E3 
- 

V T i p I f i  I 1498 

PR = 23 
(Engine 2(b) alternate) 

Power Turbine. 

P I P  7.8 

~ P ~ A ~  1.17 

Figure 4 . 4 - 9 .  N E T  Turboprop Gas Generator Axial Flow 
Compressor T h r e e  Stage Power Turbine.  
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r a t i o  (r/R) of 0.30 when comparing the axi-symmetric n a c e l l e  body t o  the  prop- 

f an  r ad ius  va lue .  

4.4-10 and 4.4-11 which show t h a t  a "basic" n a c e l l e  o u t l i n e  can s a t i s f a c t o r i l y  

enc lose  e i t h e r  s e l ec t ed  engine.  

s tud ied  a r e  included i n  Sec t ion  4.7 of t h i s  r e p o r t .  

This s t e p  i n  t h e  design process i s  i l l u s t r a t e d  i n  Figures  

Further  i n v e s t i g a t i o n  of t h e  n a c e l l e  des igns  

The pre l iminary  des ign  s t u d i e s  of the t w o  s e l e c t e d  engines  r e s u l t e d  i n  

a set of cyc le  assumptions and comparisons t h a t  a r e  included i n  Table 4.4-2 

while Table 4.4-3 i s  included t o  show t h e  comparison i n  terms of t he  indi-  

v i d u a l  aerodynamic components. 

These cyc le  assumptions and comparisons were made a f t e r  some configura- 

t i o n  s t u d i e s  had est imated the  e f f e c t  on cyc le  parameters when varying boos ter  

p re s su re  r a t i o  and cyc le  temperature.  

t hese  s t u d i e s .  

Figure 4.4-12 shows t he  summary of 

Booster and core  co r rec t ed  flow changes a r e  shown a s  a func t ion  of boos te r  

p re s su re  r a t i o ,  on the  l e f t  hand s ide  of t he  f i g u r e  a s  s o l i d  l i n e s ,  while the  

dashed l i n e s  represent  t h e  add i t iona l  change due t o  an inc rease  of 100" F i n  

T41. The cen te r  po r t ion  of t he  f igu re  shows the  e f f e c t  of t he  same v a r i a t i o n s  

i n  boos te r  p r e s s u r e  r a t i o  on the  s ize  of the  high pressure  tu rb ine  and t h e  

maximum takeoff  compressor d e l i v e r y  temperature .  

The r i g h t  hand s i d e  of t he  f igu re  shows again the  same v a r i a b l e  boost 

p re s su re  and i t s  e f f e c t s  on the  minimum SFC a t  c r u i s e  and t h e  s h a f t  horsepower 

t o  the  gearbox. 

The r e su l t s  of t h e s e  s t u d i e s  led t o  the  s e l e c t i o n  of t he  cyc le  assump- 

t i o n s  shown i n  Table 4.4-2 where it  may be noted t h a t  t he  boos te r  p re s su re  

r a t i o  of 1.75 has  been s e l e c t e d ,  a s  has  a cyc le  temperature  of 2390" F. 

These va lues  may be compared with the o r i g i n a l  assumption which used a 1.67 

P/P boos t e r  and a 2350" F cyc le  set-up temperature.  

The f i n a l  APET tu rbosha f t  engine s i z e s  f o r  t he  t h r e e  d i f f e r e n t  c r u i s e  

Mach numbers considered a r e  summarized on Figure 4.4-13 where boos te r  and core  

engine cor rec ted  a i r f l o w  as w e l l  a s  propfan diameter ,  s h a f t  horsepower and 

t h r u s t  are shown f o r  each c r u i s e  Mach number s tud ied .  
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Table 4.4-2. APET Turboprop Configuration Studies - Cycle 
Assumption Comparisons. 

0 At M0.80/35000' + 18' 
Thrust 
PR Overall 
T41 - " F 

w/T/s LP 
PRLP 
n ~ p  PolyIAdia 
AP Gooseneck 

W/T/s Core 
PR Core 
IIC PolyIAdia 

AP Combustor 

"Combus t or 

No. HPT Stages 
W/T/P HPT 

nt (Cycle) 

Ah/T LPT 
PIP LPT 
"LPT 

P8 1 PO 

Total Cooling Air 
Total Chargeable 

"prop 
SFC 

All Axial 

4000 
40.2 
2390 

69.9 
1.75 
0.88810.881 
1.5% 

44.2 
23.0 
0.89810.848 

4.95% 
0.995 

2 
6.53 
0.914 

0.101 
7.6 
0.920 

1.50 

17 .O 
9.3 

0.809 
Base 

Axi 
Centrifugal 

4000 
40.2 
2390 

70.3 
1.75 
0.88810.881 
1.5% 

44.5 
23 .O 
0.897/0.846 

6.0X 
0.995 

2 
6.65 
0.915 

--- 
0.100 
7.4 
0.920 

1.50 

17.0 
9.3 

0.809 
+0.5% 

Propeller HP @ 0.8135K + 18" 6450 
Propeller HP @ 0.2/SL + 27" 12500 

6445 
12500 

1 
B 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
i 
I 



Table 4.4-3. APET Turboprop Conf igura t ion  S tud ie s  - Component 
Aerodynamic Comparisons. 

Engine Conf igura t ion  

A.  Booster/LP Spool 

No. Stages  
W 6 1 6  

WA/AA 
v Tip/ifI 
r/r 
PR 

B. Compressor 

No. Stages  

w&/ 6 

WAIAA 
V T i p / f F  Axia l  
V T i p l J T  Impeller 
PR 
Last Blade Height 

C.  HP Turbine 

No. Stages  

Ah/T* 

JI P i t c h  (Avg) 
1st Stage  Blade Height 

W/T/ P 

PIP 

D. LP Turbine 

No. Stages  
Ah/T 

JI P i t c h  (Avg) 
PIP 

 AN^ 

A 1  1 
Axial 

2 
69.9 

39.0 
924 
0.67 
1.75 

10 

44.2 
38.0 
1498 
--- 
23.0 
0.51" 

2 
6.53 
0.086 
5.14 
0.66 
1.12" 

4 
0.100 
7.6 
0.95 
42.5 * 109 

Axi 
Cent r i f uga 1 

2 
70.3 

39 .O 
9 24 
0.67 
1.75 

5+1 

44.518.43 
38.0132.3 
1498 
1407 
7.12 x 3.23 = 23 
0.42" 

2 
6.65 
0.086 
5.16 
0.66 
1.13" 

4 
0.100 
7.6 
0.95 
42.5 * 109 

* A l t i t u d e  Thrus t  = 4000 l b s  
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Cycle PR, T41 Impact on Performance Component Sizes, T3 Levels 

. 40001 HXCL Thrust Sized Engines 

= 2350- HxCL. 2450°F @ T-O 
2450OF HxcL, 255OoP @ T-0 

T41 

BoosterlCore 
Sizes 

pounds per second 

r .i 4 +looo 

60 

50 

40 

1 .o 1.5 2.0 

1200 

1100 

1000 

10 

k b  

1 6  

4 

Hax T-0 T3 

OF 

Gearbox HP @ .2/SL 

13000r 

12000 u 

H P T  Size 
r 

1 .o 1.5 2.0 

Hin 0.8135K SFC 

.48 

1 .o 1.5 2.0 - Booster PR - - 
H C PR 2 3  34.5 46 

x L OA 

Figure 4.4-12. Turboprop Configuration Studies. 
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Figure 4.4-13.  Final AEPT Turboshaft Engine Sizes .  
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4.4.3 Engine Weight and Cost 

A s  ou t l i ned  i n  Sec t ion  4.2.5,  computer programs l inked  t o  t h e  des ign  pro- 

Gearboxes and o t h e r  d r i v e  gram are used t o  gene ra t e  engine weights and c o s t s .  

components were es t imated  sepa ra t e ly .  This  s tudy  a l s o  r equ i r ed  t h a t  t he  

s e l e c t e d  engines and gearboxes toge the r  with t h e i r  performance decks be  for-  

matted i n t o  sca l ab le  d a t a  packages f o r  f u t u r e  a i r f rame pre l iminary  des igns .  

A s  a l r eady  indica ted  i n  Sec t ion  1, t h e  b a s e l i n e  APET propuls ion  systems were 

f rozen  at  a value of 12,500 s h a f t  horsepower, and t h i s  i s  t h e  va lue  t h a t  was 

used f o r  genera t ing  t h e  c o s t  and weight d a t a  b a s e l i n e s .  The s e l e c t e d  engines  

(2b and 3b) were l a i d  ou t  i n  a geometry t h a t  i s  usable  f o r  propuls ion  i n s t a l l a -  

t i o n  s t u d i e s .  F igures  4.4-14, -15 and -16 have been included t o  show t h e  t h r e e  

b a s e l i n e  conf igu ra t ions ,  geometry, weights and c e n t e r  of g r a v i t y .  

These referenced f i g u r e s  are a l s o  included as p a r t  of Appendix 111 a t  the  

end of t h i s  r e p o r t ,  and appropr i a t e  s c a l i n g  laws f o r  dimensions and weights 

are  provided the re in .  Thus it  should be p o s s i b l e  t o  use  the  APET engine com- 

p u t e r  deck, which is a "de l iverable"  c o n t r a c t  i t e m  i n  t h i s  NASA sponsored 

s tudy ,  and conduct a i r p l a n e  pre l iminary  des ign  s t u d i e s  i n  a l a r g e  range of 

s h a f t  horsepowers, us ing  the  d a t a  s c a l i n g  l a w s .  Cost d a t a  i s  suppl ied  t o  

NASA under separa te  cover ,  and i s  not  reproduced he re .  

4.4.4 Cycle S e l e c t i o n  Summary 

The se l ec t ed  cyc le  c h a r a c t e r i s t i c s  f o r  t he  b a s e l i n e  engines  des igna ted  

2 (b ) .  and 3 (b )  a r e  g iven  i n  F igure  4.4-17. It may be  noted t h a t  t he  temperature  

set-up i s  fixed so t h a t  t h e  Denver hot-day t akeof f  r a t i n g  T41 ( t u r b i n e  temper-  

a t u r e )  i s  100" F above the  hot-day, end-of-climb r a t i n g  po in t .  These r a t i n g s  

e s t a b l i s h  t h e  cool ing a i r f l o w  requi red  by t h e  t u r b i n e  s t a g e s  and e s t a b l i s h  t h e  

f i n a l  co re  s i ze  a t  a co r rec t ed  a i r f l o w  l e v e l  of 44.2 pounds per  second. Resul- 

t a n t  engine t h r u s t  for t he  s e l e c t e d  10-bladed, 800 f t / s e c  t i p  speed, propfan i s  

20,000 pounds a t  Sea Level S t a t i c  and 16,600 pounds a t  Mach 0.20, Sea Level ,  

+27" F; t h e  p r o p e l l e r  s h a f t  horsepower being he ld  t o  t h e  12,500 va lue  a l r eady  

e s t a b l i s h e d  for  t he  des ign  of t h e  b a s e l i n e  gearboxes.  A s  i nd ica t ed  i n  the  

previous sec t ion ,  an Appendix has  been provided i n  t h i s  r e p o r t  so t h a t  a i r -  

frame des igners  may select the  power l e v e l  of t h e i r  cho ice ,  us ing  s c a l i n g  

laws, and match propuls ion  system t o  a i r f rame requirements .  
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Figure  4.4-14.  APET Basel ine ( A x i - h i )  Engine and Gearbox. 

F igu re  4.4-15. M E T  A l t e r n a t e  (Axi-Axi) Engine w i t h  S p l i t  Gearbox. 
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Figure  4.4-16. APET Engine (hi-hi) With Concentr ic  Gearbox. 
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0 Cycle Parameters a t  M0.80/35000 f t  + 18" 

PR Booster = 1.75 

PR Core = 23.0 

PR Overal l  = 40.2 

Turbine Temp., " F = 2390/2490" F (MxCl/Denver) 

0 Conf i e u r a t i o n  

- 2 Stage V I G V  Booster 

- Scaled Version of 10 Stage Ref. Turbofan Core 

- 4 Stage Power Turbine tha t  Drives  VIGV 

Booster and Prop 

0 Prop, Gearbox, Gas Generator Sizes  f o r  4000 l b  M x C l  
Thrust  at  M0.8/35K + 18" 

- Booster WfT/6 = 69.9 

- Core w i F / 6  = 44.2 SLS FN = 20000 

- P r o p e l l e r  Dia. = 13.1 f t  a t  SHP/D2 = 37.5 0.2/SL FN = 16600 

- PropeL1er.W Max. = 12500 

Figure 4.4-17. Basel ine APET Boosted Turboprop Descr ip t ion .  

4.4.5 Other Cycle Parameters 

The s e l e c t i o n  of t he  engine parameters required p r i o r  examination of t he  

e f f e c t s  of t he  v a r i a b l e s  f o r  t he  propfan a s  w e l l  a s  the  bas i c  engine cyc le s .  

These examinations wire then c a r r i e d  through both u n i n s t a l l e d  and i n s t a l l e d  

performance comparisons, using t h e  appropr ia te  i n s t a l l a t i o n  l o s s e s  i n  a 

c l e a r l y  def ined bookkeeping system. 

Typical f l i g h t  paths  encompassing climb and c r u i s e  were eva lua ted  using 

i n s t a l l a t i o n  drag  e f f e c t s  t h a t  were d i r e c t l y  subt rac ted  from the  t h r u s t  ava i l -  

ab l e .  These drags  were f u r t h e r  broken down i n t o  those  t h a t  a r e  chargeable  t o  

the  n a c e l l e s  and those  t h a t  were a d d i t i v e ,  i n  t he  case  of t he  propfan i n s t a l l a -  

t i o n ,  t o  the  e f f e c t s  due t o  p rope l l e r  s l i p s t r eam.  
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These s t u d i e s  are summarized i n  t h e  fo l lowing  i d e n t i f e d  F igures  and 

Tables:  

i n s t a l l a t i o n .  

f o r  t h e  turboshaf t  engines .  These f o u r  f i g u r e s  and t a b l e  summarize t h e  

propuls ion  systems t h a t  were sub jec t ed  t o  t h e  i n s t a l l a t i o n  and performance 

s t u d i e s  t h a t  provide t h e  d a t a  necessary f o r  t h e  f i n a l  c y c l e  s e l e c t i o n .  

Figures  4.3-1 and 4.3-2 have been shown f o r  t h e  r e f e r e n c e  turbofan  

Figures  4.4-10 and 4.4-11 and Table 4.4-2 have a l s o  been shown 

The propfan v a r i a b l e s  of t i p  speed, d i s k  loading  and n e t  e f f i c i e n c y  a r e  

shown i n  Figure 4.4-18. The f l i g h t  cond i t ions  i n  the  f i g u r e  show the  e f f e c t s  

of  t he  v a r i a b l e s  f o r  the  t h r e e  c r u i s e  Mach numbers a t  a cons tan t  c r u i s e  a l t i -  

tude.  

fan  a r e  shown i n  Figure 4.4-19, where the  t h r e e  i d e n t i c a l  Mach numbers have 

been used a t  the same cons tan t  c r u i s e  a l t i t u d e .  This  f i g u r e  r e p r e s e n t s  t he  

power hook of t h e  u n i n s t a l l e d  engines  i n  terms of changes i n  S p e c i f i c  Fuel  

Consumption (SFC) and a l s o  i l l u s t r a t e s  t he  d e l t a  percentage between the  com- 

pe t ing  propuls ion systems. Although c r u i s e  SFC i s  of g r e a t  i n t e r e s t ,  t h e  per- 

formance of the  competing systems must  a l s o  be eva lua ted  through the  remainder 

of the  f l i g h t  regimes. 

and 3.4-5 have been presented a s  being t y p i c a l  of t he  Takeoff and Climbout 

performance of the two competing propuls ion systems. 

show f u l l y  i n s t a l l e d  comparisons which a r e  using i n s t a l l a t i o n  f a c t o r s  shown i n  

Figure 3.5-1. These f i g u r e s ,  with modi f ica t ion  f o r  t he  u n i n s t a l l e d  systems, 

can be used a s  a guide t o  the  l a r g e  d i f f e r e n c e s  between the  two  compet i tors  

during climb t o  f i n a l  c r u i s e  a l t i t u d e ,  and it may be  noted t h a t  t h e  per for -  

mance d e l t a s  and SFC's a r e  much l a r g e r  than the  va lues  being shown f o r  t he  

se l ec t ed  c r u i s e  p o i n t s  i n  Figure 4.4-19. 

formance i s  l a r g e l y  being dominated by the  d e l t a s  dur ing  take-off and climb 

o u t ,  and t h i s  i s  h igh ly  b e n e f i c i a l  f o r  t he  propfan powered a i r c r a f t .  These 

u n i n s t a l l e d  comparisons a r e  summarized i n  Table 4.4-4. Note t h a t  a Denver hot  

day takeoff  has  a l s o  been included i n  t h i s  t a b l e .  

Unins ta l led  performance of the  APET turbofan  ve r sus  the  APET turboprop- 

I n  the  Program Overview (Sec t ion  3.0) Figures  3.4-4 

Note t h a t  t hese  f i g u r e s  

C l e a r l y  t h e  short-haul a i r p l a n e  per- 

The APET s tud ie s  a l s o  included eva lua t ions  of d e l t a  SFC's and d e l t a  

t h r u s t s  f o r  propfans t h a t  a r e  designed f o r  700, 750 and 800 f e e t  per  second 

t i p  speeds.  

37.5) t o  provide equal t h r u s t  a t  t he  end of climb. This  i s  i l l u s t r a t e d  i n  

Figure 4.4-20. This f i g u r e  c l e a r l y  shows t h a t  f o r  a cons tan t  t h r u s t  o b j e c t i v e  

I n  each c a s e ,  t h e  propfan was power s i zed  ( a t  a cons tan t  SHP/D2 = 
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Table 4.4-4. AF'ET Unins ta l led  Comparisons. 

M0.80/3513 + 18' - FN 
- SFC 

0 MO.Z/SL + 27' - FN 
- SFC 

*O M0.2/5330 + 52' - FN 
- SFC 

M0.6/20000' + 18' - FN 
- SFC 

Denver, Hot Day Takeoff * 

Engine 

Reference TF 

4000 
Base 

Base 
Base 

Base 
Base 

Base 
Base 

Base TP 

4000 
-10.6% 

+18.1% 
-31 .O% 

+13.2% 
-31.7% 

+8.0% 
-16.4% 

t h e r e  are p e n a l t i e s  i n  f u e l  burn,  engine g a s  gene ra to r  s i z e  and system weight 

f o r  t i p  speeds below 800 f p s .  The inset b lock  on the f i g u r e  a l s o  shows t h e  

r e l a t i v e l y  seve re  pena l ty  t h a t  would be incur red  by t h e  use of lower t i p  speeds 

du r ing  t h e  t a k e o f f .  In  a l l  t h e s e  examples t h e  a i r c r a f t  des ign  has  been 

optimum f o r  t h e  s e l e c t e d  c r u i s e  speed and t h e  a i r c r a f t  weights  have been 

a d j u s t e d  t o  r e f l e c t  t h e  des ign  d i f f e r e n c e s .  

4.4.6 P r o p e l l e r  S e l e c t i o n  

The p r o p e l l e r  (or propfan) a s  a system concept  i s  i l l u s t r a t e d  i n  F igure  

4.4-21. For t h i s  s tudy ,  t h e  performance b lock  d a t a  w a s  de r ived  from t h e  

Hamiiton Standard Data Package No. SPO 4A80 dated  October 1980. I n  t h e  sys- 

t e m s  b lock  i t  is  assumed t h a t  a hydromechanical p i t c h  change mechanism (PCM) 

would be  included with t h e  propfan and b e  suppl ied  by gearbox o i l  a t  h igh  pres-  

su re .  Normally, t h e  p r o p e l l e r  d r i v e  gearbox r e q u i r e s  a Lubr ica t ion  system t h a t  

o p e r a t e s  a t  low p res su res  (50  - 200 PSI), while t h e  PCM is es t imated  t o  r e q u i r e  

a 3000 PSI supply pressure .  Thus the gearbox i s  r equ i r ed  t o  d r i v e  two hydrau- 

l i c  pumps - one f o r  l u b r i c a t i n g  se rv ice  t o  t h e  gearbox while  t h e  second pump 

boos t s  t he  50 PSI p res su re  l e v e l  t o  the  r e q u i s i t e  h igh  p res su re  f o r  t h e  PCM. 
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The P i t c h  Change Control  Unit  (PCMCU) i s  mounted on the  gearbox and communi- 

cates wi th  the  p r o p e l l e r  d r i v e s h a f t .  The PCMCU con ta ins  e l e c t r o h y d r a u l i c  

se rvo  v a l v e s  which are responsive t o  c o n t r o l  commands from the  propuls ion  

system F u l l  Author i ty  D i g i t a l  Engine Control (FADEC). 

r e c e i v e  s i g n a l s  from t h e  FADEC u n i t ,  t hey  d i r e c t  t h e  h igh  p res su re  o i l  t o  

e i t h e r  t he  coa r se  o r  f i n e  p i t c h  s i d e  of t h e  hydrau l i c  p i s t o n  assembly which i s  

connected t o  t h e  p r o p e l l e r  b lades  by mechanical l inkage .  O i l  i s  t r a n s f e r r e d ,  

w i t h i n  the  PCMCU, a c r o s s  the  s t a t i o n a r y  t o  r o t a t i n g  b a r r i e r  by a series of 

s l i p r i n g s  t h a t  seal around t h e  d r i v e s h a f t  s tub  ex tens ion ,  and o p e r a t e  the  PCM 

i n  an a x i a l  manner. Rota t ion  of the  propfan b l a d e s  i n  the  hub housing i s  

achieved by ax ia l - to - ro t a t iona l  motion v i a  the  mechanical l inkage  and i t s  

geometry. 

When the  servo  va lves  

Also contained wi th in  the  PCM are  t h e  s a f e t y  dev ices  f o r  ground and f l i g h t  

ope ra t ions .  A f ixed  f l i g h t  f i n e  p i tch  s t o p  i s  provided t h a t  precludes selec-  

t i o n  of  b l ade  angles  f i n e r  than  t h e  f i n e  p i t c h  s e t t i n g  un le s s  a sepa ra t e  com- 

mand h a s  been received t o  remove the  device  t h a t  l ocks  the  p i t c h  s top .  Also, 

a t r a v e l l i n g  mechanical p i t c h  s t o p  i s  included t h a t  fol lows the  commanded b lade  

ang le  by 1-2 degrees  when p i t c h  i s  being coarsened,  and l eads  t h e  b l ade  angle  

by t h e  same amount when f i n e r  p i t c h  is being commanded. 

s t o p ,  or  mechanical p i t c h  lock  a s  i t  is  sometimes c a l l e d ,  i s  a prime safety-of- 

f l i g h t  mechanism i n  t h a t  i t  p o s i t i v e l y  prec ludes  inadve r t en t  movement of t he  

b l ades  t o  hazardous drag  o r  RPM regimes. 

This  t r a v e l l i n g  p i t c h  

Sa fe ty  of  f l i g h t  cons ide ra t ions  demand t h a t  f a i l u r e  mode ana lyses  of bo th  

t h e  engine and t h e  propfan are conducted. Hamilton-Standard h a s  provided the  

propfan d a t a  t h a t  has  been used i n  t h i s  study. For some f l i g h t  cond i t ions  i t  

is  necessary  t o  compute f e a t h e r  drag whi le  f o r  o t h e r  f a i l u r e  modes i t  i s  appro- 

p r i a t e  t o  c a l c u l a t e  windmill ing propfan drag  fo rces .  For example, with an 

engine inope ra t ive  during c r u i s e ,  the a i r p l a n e  drag  model would use the  f e a t h e r  

drag  va lues .  For engine f a i l u r e  a t  V2, windmilling drag  would be used i n  the  

drag  model u n t i l  s a f e  climb-out parameters have been e s t a b l i s h e d  and t h e  air-  

plane can be cleaned-up by commanding t h e  a f f e c t e d  propfan t o  the  f e a t h e r  

pos it ion .  
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Figure  4.4-22 shows t h e  d a t a  used f o r  c a l c u l a t i n g  f e a t h e r  d rag ,  and Fig- 

u r e  4.4-23 shows, v e r s u s  propfan d iameter ,  t h e  e s t ima ted  h y d r a u l i c  f low r a t e  

r equ i r ed  t o  f e a t h e r  t h e  propfan.  

Windmilling drag  estimates were made by us ing  s e l e c t e d  va lues  from t h e  

d a t a  shown on Figures 4.4-24 through 4.4-27 which cove r  the  phys ica l  d rag  

f o r c e s  f o r  two l e v e l s  of  Mach number and a l t i t u d e  ( f o r  a 13.0 f t .  d iameter  

propfan) ,  and the  es t imated  d rags  and propfan t i p  speeds f o r  des ign  Mach num- 

b e r s  between 0.10 and 0.80 a t  c r u i s e  a l t i t u d e  and a l s o ,  on Figure  4.4-27 

v a l u e s  f o r  t h e  V2 engine  f a i l u r e  case. 

v a r i a b l e  parameter f o r  t he  r e a l i z a t i o n  of bo th  t h e  drag  f o r c e s  and t h e  wind- 

m i l l i n g  RPM. 

Propfan power loading  i s  a l s o  a 

Tip  Speed = 800 FPS 
3000 PSI Hydraul ic  Supply 

CK = Speed of Sound (Knots) 

d p o  = Densi ty  r a t i o  
0.008 , 
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Mach No. (Md 
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F igure  4.4-22. 10-Blade, 1986 Propfan F igu re  4.4-23. S i n g l e  Ro ta t ion  
Project ions-Drag Coef- 10-Blade Propfan - 
f i c i e n t  Versus Mach Maximum P i t c h  
Number. Change Flow Versus 
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I 

4.5  IMPACT OF DESIGN FEATURES ON ENGINE DETERIORATION MODES 

The mechanical design of t h e  APET turboshaf t  engines takes  i n t o  account 

t h e  s i g n i f i c a n t  d e t e r i o r a t i o n  in  performance with t i m e  e f f e c t s  found i n  o the r  

tu rboshaf t  engines,  and introduces a l l e v i a t i o n  by the  s e l e c t i o n  of the  design 

f ea tu res .  

The core compressor t i p  clearance con t ro l  i s  due t o  the  s e l e c t i o n  of the  

E3 engine compressor geometry which has  a low L/D r a t i o  t h a t  ensures a very 

s t i f f  r o t o r  spool.  Rotor t o  shroud c learances  are improved by using double- 

walled s t a t o r s  t h a t  reduce t h e  thermal g rad ien t s  a t  the  f langes.  

High pressure  turb ine  clearance con t ro l  measures W i l l  use the same system 

t h a t  w a s  designed f o r  the  fu l l - s ca l e  E3 engine. 

t e  s ted s uc ces  s f u l 1  y . 
This system has  a l ready  been 

Controls over the  low pressure tu rb ine  c learances  are made i n  two  ways. 

F i r s t ,  a x i a l  c learances  a r e  maintained by loca t ing  the  t h r u s t  bear ing a t  the  

r e a r  of t he  engine. This l oca t ion  reduces the  axial excursions due t o  d i f f e r -  

e n t i a l  thermal expansions and he lps  t o  reduce s e a l  wear and minimize flowpath 

w a l l  s t e p s .  Second, t h e  incorporat ion of a bear ing support  through the  

Stage 1 low pressure  turb ine  nozzle produces a s t i f f e r  system and improves the  

con t ro l  of c o n c e n t r i c i t y  between the r o t o r  and the  s t a t o r .  Also, d i f f e r e n t i a l  

bear ings  and t h e i r  assoc ia ted  problems have been el iminated.  

Maintenance of l abyr in th  s e a l  c learance i s  improved by the  use of seals 

t h a t  a r e  s i g n i f i c a n t l y  smaller  i n  diameter than i s  cu r ren t  engine p rac t i ce .  

Overal l  engine ma in ta inab i l i t y  i s  enhanced by a modular design concept 

t h a t  allows separa t ion  of major assemblies without d i s turbance  of adjacent  

hardware. Also, t h e  high pressure compressor i s  provided with ho r i zon ta l  

s p l i t  f langes  t o  a id  i n  compressor maintenance. 
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4.6 GEARBOXES, LUBRICATION AND HEAT EXCHANGERS 

4.6.1 Data Base 

4.6.1.1 Gearboxes 

General  E l e c t r i c  has been an indus t ry  l e a d e r  i n  p rov id ing  Marine and 

I n d u s t r i a l  systems powered by steam and/or gas  t u r b i n e  engines ,  and h a s  a l s o  

provided land t r a n s p o r t a t i o n  ( D i e s e l / E l e c t r i c )  and i s  engaged i n  M i l i t a r y  

a c t i v i t y  on Tank propuls ion  and t ransmiss ion  design.  

t i o n s ,  on a worldwide b a s i s ,  have used main power t r ansmiss ion  gearboxes 

designed and manufactured by t h e  var ious  d i v i s i o n s  o f  t h e  Company. 

space  power t ransmiss ions  have included t h e  T58 and T64 engine f a m i l i e s  of 

a p p l i c a t i o n s .  

horsepower,  s i n g l e  s t a g e  r educ t ion  gea r se t s  f o r  d r i v i n g  t h e  Var ib l e  P i t c h  and 

t h e  Fixed P i t c h  engine conf igura t ions .  These have most r e c e n t l y  been jo ined  

by t h e  commercial CT-7 turboprop engine now engaged i n  f l i g h t  tests on t h e  

Saab /Fa i r ch i ld  SF 340 commuter a i r c r a f t .  From t h e s e  d i v e r s e  a c t i v i t i e s  a 

l a r g e  d a t a  base has  been bui l t -up that  i nc ludes  a f u l l  range of t h e o r e t i c a l  

t o o l s  f o r  ana lyses ,  and a n  equa l ly  ex tens ive  l i b r a r y  o f  empi r i ca l  da t a .  It 

Many of t hese  appl ica-  

Aero- 

Also t h e  NASA/GE QCSEE Program designed and developed two high- 

w a s  on t h e s e  d a t a  t h a t  the  APET gearbox des ign  a c t i v i t y  w a s  based.  

I n i t i a l  e f f o r t s  were d i r e c t e d  t o  e s t a b l i s h i n g  t h e  v a l i d i t y  o f  t he  u s e  of 

s c a l i n g  laws i n  t h e  ex tens ion  of shaf t  powers from t h e  known 4-5000 SHP base 

t o  t h e  new l e v e l  r equ i r ed  (approximately 12,500 SHP). 

i n - l i ne  gearboxes were p re l imina ry  designed and weighed. Complexity and 

r e l i a b i l i t y  i n d i c e s  were used i n  a grading process  t o  o b t a i n  comparative 

judgments o f  p r a c t i c a l i t y  and worth. 

Three o f f s e t  and t h r e e  

Before examining t h e  d e t a i l s  of t h e  APET gearboxes,  i t  is  appropr i a t e  t o  

summarize t h e  a t t r i b u t e s  cons idered  to  be t h e  most d e s i r a b l e  (not  n e c e s s a r i l y  

i n  t h e  o rde r  of  importance f o r  ranking purposes).  

1. High Ef f i c i ency  - Losses i n  t h e  gearbox d i r e c t l y  s u b s t r a c t  from t h e  
s h a f t  horsepower a v a i l a b l e  and hence reduce p r o p e l l e r  t h r u s t .  

2. Lightweight - The advanced turboprop has  many h u r d l e s  t o  overcome 
and gearboxes e x h i b i t i n g  t h e  weight technology l e v e l  of prev ious  
turboprops would probably b e  unacceptab le .  
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3. 

4 .  

R e l i a b i l i t y  - This can run counter t o  ( 2 )  above but  must have pre- 
cedence i n  design s e l e c t i o n .  
layout ,  unc lu t te red  wi th  extraneous d r i v e s  and have the  bear ings and 
bearing support  arrangements chosen t o  ease the  achievement of 
required L10 (system) l i f e .  It seems c e r t a i n  t h a t  very high gearbox 
r e l i a b i l i t y  l e v e l s  w i l l  have t o  be e s t ab l i shed  and demonstrated 
before an a i r l i n e  opera tor  would se r ious ly  cons ider  t he  advanced 
turboprop propulsion system. 

The advanced gearbox must be a simple 

I n i t i a l  P r i c e  - Gearboxes a r e  expensive - i n  the  order  of two hun- 
dred and f i f t y  t o  th ree  hundred d o l l a r s  per pound (and t h i s  assumes 
amortization of development and too l ing  c o s t s  over a 2000 u n i t  pro- 
duction run) .  I f  R&D c o s t s  p r i o r  to  development s ta r t ,  and f a c i l -  
i t i e s  cos t s  f o r  s p e c i a l  test r i g s  including water brakes a r e  added 
i n ,  the per  pound cos t  can be increased by 20 - 30 percent .  
service and achieving the  ma in ta inab i l i t y  goals  being set by t h i s  
APET study, overhaul and spare  p a r t s  cos t  should be a small  i t e m .  

Once i n  

The GE designed T64 gearbox i s  an exce l l en t  example of a modern in-service 

gearbox. Figure 4.6-1 shows a c ros s  sec t ion  of t he  T64 gearbox and a summary 

of the  pr inc ipa l  ma te r i a l s  used. 

Some physical c h a r a c t e r i s t i c s  of t h i s  gearbox are :  

Ratios 
Overal l  13.44 
Stg.  1 ( o f f s e t )  2.58 
Stg.  2 (planetary)  5.21 

Horsepower 3400 
Speeds 

Input (rpm) 15,590 
output ( r pm) 1,160 

Weight ( lb s )  340 

This gearbox was reviewed i n  depth a s  i t  serves  as an exce l l en t  po in t  

of departure  for  more advanced gearboxes. 

4.6.1.2 I n i t i a l  Candidates 

It was f e l t  t h a t  every conf igura t ion  t h a t  had ever  been employed i n  a 

turboprop reduction gearbox (whether o r  not the  engine had entered production) 

had earned the  r igh t  t o  a p lace  on the  l i s t  of i n i t i a l  candidates .  In  addi- 

t i o n  o ther  configurations thought t o  be of poss ib le  i n t e r e s t  were added t o  the  

l i s t .  These candidates include a l l  those t h a t  have been descr ibed favorably 

i n  recent  industry s tud ies .  
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TABLE OF MATERIALS 

Gears - A M  6265 - Carburized and Ground 
Shot Peened - Black Oxided 

Ring Gear Support - AMs 6415 - Shot Peened - 
Bearings - 52100 and M50 - Cages S i l icon 

Iron Bronze or Steel 
Casings - AMs 4218 (356-T6 A l )  Anodized - 
Prop Shaft - AMs 6415 - Shot Peened - 

Black Oxided 

Black Oxided 

Outside Surtace Epoxy Coated 

PROPELLER e 

- e- ENGINE 
INPUT 

Figure 4.6-1. T64 SDG “Speed Decreaser Gearbox’! 

165 



4.6.1.3 I n i t i a l  Screening 

The measure of m e r i t  f o r  the  i n i t i a l  s e l e c t i o n  of the  var ious  gear  con- 

The conf igura t ions  were analyzed and compared using f igu ra t ions  was weight. 

the  methodology developed by R . J .  Willis (Reference 40).  

quick comparisons t o  be made and r e a d i l y  enables  the e f f e c t  of parameters such 

a s  r a t i o  and number of branches on weight t o  be determined. 

an example of a p l o t  made using t h i s  method t h a t  show the  e f f e c t s  on weight 

of r a t i o  and configurat ion.  

APET study both affirmed i t s  s i m p l i c i t y  and usefu lness  and a t  the  same time 

suggested the  need f o r  some poss ib l e  refinement.  

weight (or gear  s o l i d  r o t o r  volume) as opposed t o  t o t a l  system weight. 

This method permits 

Figure 4.6-2 i s  

The experience gained using t h i s  t o o l  during t h e  

The system keys on gear  

I f  gearboxes of d iverse  conf igura t ions  a l l  had gear  weights t h a t  were the  

same f r a c t i o n  of to ta l  system weight t h i s  would not  be a problem, b u t  unfor- 

t una te ly  they do not.  An example of t h i s  i s  the  c o n t r a s t  between a p lane tary  

system which has r e l a t i v e l y  l i g h t  gears  with many heavy supporting components 

such a s  bearings,  planet  c a r r i e r ,  e t c .  and a s i n g l e  branch double reduct ion  

gearse t  where the gea r s  themselves a r e  a much l a r g e r  percentage of the  t o t a l  

weight. 

The above i ssue  i s  cu r ren t ly  being addressed so t h a t  f o r  f u t u r e  s t u d i e s  

t h i s  proven method w i l l  be even more prec ise .  

opment i s  t o  b e t t e r  enable the  method t o  r e f l e c t  des i red  technology l e v e l s .  

This can be done by r ev i s ing  both the  K-value f a c t o r  ( su r face  d u r a b i l i t y  

constant  which r e l a t e s  t o  allowable too th  Hertzian s t r e s s )  a s  wel l  a s  the  

app l i ca t ion  constant,  k. 

Another refinement under devel- 

The judgment of experienced personnel a l s o  entered the  s e l e c t i o n  process .  

An example of screening by judgement i s  the  two s t age  p lane tary  (double plane- 

t a r y )  configurat ion.  

prop where the  r a t i o  would be i n  the  neighborhood of 15:1, two planetary u n i t s  

i n  s e r i e s  a r e  j u s t  not needed for  propfan r a t i o  l e v e l s .  

of such a gearbox impacts c o s t  g r e a t l y .  

Although a poss ib le  candidate  for a conventional turbo- 

The high p a r t s  count 

As  a f i n a l  i s sue  i n  the  preliminary screening process there  was a d e s i r e  

t o  see those configurat ions t h a t  had been used with g r e a t  success on produc- 

t i o n  turboprop programs survive the  i n i t i a l  screening and be among the  group 
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F = face width 

d = pitch dia. 
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Figure 4.6-2. APET Gearbox Study. 



selected for detailed preliminary designs. 
planetary fared poorly during the initial screening we would probably have 

felt obligated to include it among the detailed preliminary design candidates 

solely because of the successful history of the T56 and T64 engines which use 
this configuration. 

As an example, had the offset 

4.6.1.4 List of Final Candidates 

Figure 4.6-3.shows illustrations of the seven gearbox configurations that 

survived the initial screening process. 

first six and a conceptual sketch was made of the seventh. 

are epicyclic and the remaining two are double reduction layshaft designs. 

Also four of the designs are concentric and three are offset. 

Preliminary designs were made of the 

Five of the seven 

4.6.2 Preliminary Design Studies 

4.6.2.1 Influence of Propfan on Gearbox Design 

Virtually all turboprop propeller speed decreasing gearboxes (SDG'S) 
have their ratios falling within a relatively narrow band regardless of the 

size of the engine. Some examples are: 

Engine SDG Ratio 

T64 13.44 
T56 (early) 12.5 
T56 (late) 13.54 
CT-7 15.9 
Tyne 15.6 

The gear ratio is a function of propeller and turbine technology and is 
virtually independent of scale size. 

and turbines have a well-defined tip speed and as engines are scaled to larger 

sizes, the ratio between propeller and turbine diameters remains constant. 

Thus, for unvarying tip speeds the speed ratio (and hence gear ratio) between 

propeller and power turbine is not a function of scale size. 

The explanation is that both propellers 

A fixed ratio, as engines are scaled to larger sizes, unfortunately works 
to the decided disadvantage of SDG weight and size as is explained by the 
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TY Pe 

1. Offset Planetary 

Example 

T56, T64 

2 Offsetstar 

3. Simple Planetary 
(Inline) 

H 

4. Triple Branch 
Double Redudion 

(Inline) 

5. Double Branch 
Double Reduction 

(offset) P 
6. Triple Branch 

Compound Star 
(in I i ne) 

Dart 

7. Coupled Planetary 
(inline) T55 

Figure 4 . 6 - 3 .  APET Study Gearboxes. 
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upper h a l f  o f  Figure 4.6-4. 
weight i n  a p a r t i c u l a r  gear  s t a g e  i s  torque ,  and i n  a speed reducing gearbox 

output  torque.  I n  a mul t i - s tage  SDG t h e  output  s t a g e  is  t h e  l a r g e s t  and, 

t h e r e f o r e ,  the h e a v i e s t ,  and i s  t h e  g r e a t e s t  c o n t r i b u t o r  t o  t h e  o v e r a l l  

weight and s i z e  of t h e  gearbox. 

inescapable  conclusion t h a t  f o r  a p a r t i c u l a r  c o n f i g u r a t i o n  of SDG t h e  s i z e  and 

weight i s  p r i n c i p a l l y  d r i v e n  by t h e  output  to rque  requirement .  The upper p a r t  

of  t he  f i g u r e ,  reading from l e f t  t o  r i g h t ,  shows what happens t o  t h e  va r ious  

p r o p e l l e r  and gearbox parameters  as a h y p o t h e t i c a l  engine  i s  sca l ed  up t en fo ld  

(from 1300 t o  13,000 horsepower).  S ince  t h e  SDG r a t i o  i s  c o n s t a n t ,  t h e  torque  

could be expected t o  r ise as t h e  horsepower i n c r e a s e s ,  b u t ,  i n  f a c t ,  t h e  r i s e  

i s  much f a s t e r  because t h e  p r o p e l l e r  t i p  speed i s  cons t an t  r e g a r d l e s s  o f  s i z e  

and, t h e r e f o r e ,  t h e  speed v a r i e s  i n v e r s e l y  wi th  t h e  d iameter .  The conclus ion  

t o  be drawn i s  t h a t ,  f o r  cons tan t  p r o p e l l e r  technology ( s i m i l a r  l e v e l s  of  t i p  

speed and SHP/D2) , t h e  p r i n c i p a l  parameter  (ou tpu t  t o rque )  d r i v i n g  gearbox s i z e  

and weight s ca l e s  wi th  t h e  1 .5  power of  t h e  horsepower l e v e l .  I f  t h e r e  were 

no r e l i e f  i n  s i g h t ,  turboprops t h a t  were much l a r g e r  t han  is c u r r e n t  p r a c t i c e  

would be disadvantaged by having SDG'S t h a t  were a much l a r g e r  f r a c t i o n  of  

t o t a l  p ropuls ion  system s i z e ,  weight,  and c o s t .  

The p r i n c i p a l  f a c t o r  d r i v i n g  gear  volume and 

When combining t h e  above we are l ed  t o  t h e  

For tuna te ly ,  p r o p e l l e r  technology is  capable  of  provid ing  g r e a t  r e l i e f  as 

is  aga in  shown by reading  t h e  f i g u r e  from top  t o  bottom. The upper h a l f  of  

t h e  f i g u r e  r ep resen t s  c u r r e n t  l e v e l s  o f  p r o p e l l e r  technology whereas t h e  

bottom h a l f  of  t he  f i g u r e  i s  cons t ruc ted  u s i n g  propfan  l e v e l s  o f  t i p  speed and 

SHP/D2. 

r e l i e f  by p r o p e l l e r  speed inc reases  p r o p o r t i o n a l  t o  t h e  t i p  speed i n c r e a s e ,  

bu t  t h e  much more s i g n i f i c a n t  f a c t o r  superimposed on t h i s  i s  t h e  e f f e c t  of  t he  

much l a r g e r  l eve l s  of  takeoff  SHP/D2 permi t ted  by propfan technology. 

much g r e a t e r  power loading permi ts  a l a r g e  r educ t ion  i n  diameter  t h a t  there-  

f o r e  demands a g r e a t l y  increased  R P M  t o  main ta in  t h e  t i p  speed. As is shown, 

propfan technology permi ts  reducing t h e  r a t i o  (and t h e r e f o r e  the  SDG output  

t o rque )  by t h e  f a c t o r  of 2.63, f o r  t h e  h y p o t h e t i c a l  example. 

The h igher  t i p  speeds permi t ted  by t h e  propfan des ign  provide  modest 

The 

It should be noted t h a t  t h e  propuls ion  system i s  no t  t h e  only  b e n e f i c i a r y  

o f  p r o p e l l e r  diameter r educ t ion  as t h e  a i r c r a f t  b e n e f i t s  by pe rmi t t i ng  c l o s e r  

spac ing  of  wing mounted engines .  This  enables  a r educ t ion  i n  wing s t r u c t u r a l  
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Effect of Scaling 6 Propeller Technology 

Turboprop (14RF Propel le r )  1300 HP up x 10 13,000 HP 

ut ( f t l s e c )  715 ~ Same ,715 

SHP/D2 (hp/ f t2)  Same 11.8 

D ( f t )  -33.2 - 411 RPn 

Ratio - 15.9 

5252 -Up x 10 X m  166121.7 Torque ( f t - l b )  - 

x2.63 x l  
2.63 

800 
I - Same 

65 
+ I I I 

. 
U t  

SHP/D2 65 

D 14.14 

RPM 4*47m ,Down x ' *  ,1081 

Ratio 6 .  Same 6.05 

Torque ,Up x 10 x f iP t63168 

Figure 4 . 6 - 4 .  APET Gearbox Study. 
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weight and smal le r  t a i l  s i z e  because of easier engine-out c o n t r o l .  

l i g h t e r  landing gear  i s  s t i l l  another  b e n e f i t  of  smaller p r o p e l l e r s .  

Shor t e r ,  

4.6.3 Gearbox Design Approach 

A cons i s t en t  des ign  approach has  been used f o r  a l l  t h e  candida te  des igns .  

Th i s  des ign  approach draws upon General E lec t r ic ' s  d a t a  base a l r eady  desc r ibed  

and a l s o  includes r e s u l t s  o f  work c u r r e n t l y  i n  p r o c e s s .  Bearing and gear  

des ign  ana lys i s  computer programs c u r r e n t l y  a c t i v e  a t  General  E l e c t r i c  have 

been used. 

4.6.3.1 Design Requirements 

The design requirements  used f o r  t h e  p re l imina ry  des ign  of t h e  candida te  

gearboxes are as fol lows:  

Power = 12500 HP Max ( a t  t h e  p r o p e l l e r  s h a f t )  

Bearing System = 15000 hr. 
LlO L i f e  

From a typ ica l  miss ion  cyc le  shown i n  F i g u r e  4.6-5 t h e  cubic  mean torque 

and an average ope ra t ing  speed w a s  determined and used i n  c a l c u l a t i n g  t h e  

bea r ing  l i v e s .  

t o  eva lua te  the l i f e  of t h e  output  s h a f t  t h r u s t  bear ing .  These des ign  loads  

a r e  as fol lows:  

The cubic  mean p r o p e l l e r  t h r u s t  load w a s  a l s o  c a l c u l a t e d  

Cubic mean torque 56150 i n  l b s  

Average input  speed = 7727 rpm 

Cubic mean power = 6885 HP 

Cubic mean output  = 6390 l b s  (15600 max.) 
bea r ing  t h r u s t  load 

I n  add i t ion  t o  t h e  r a d i a l  loads caused by t h e  gea r  r e a c t i o n s ,  t h e  

e f f e c t s  of  the 1P s h a f t  moments were a l s o  included when s i z i n g  t h e  output  

s h a f t  bea r ings .  

The design approach used t o  s i z e  t h e  APET gearbox i s  p r i n c i p a l l y  involved 

wi th  t h e  design methods o r  techniques  used f o r  t h e  gea r s  and t h e  bear ings .  
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Figure 4 . 6 - 5 .  T y p i c a l  MET Mission Horsepower Versus Time. 
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Prel iminary designs have used the  approaches o u t l i n e d  i n  the  fol lowing para- 

graphs.  

4.6.3.2 Gear Design Approach 

The gear  design a l lowables  used i n  t h i s  s tudy are as fol lows:  

Compr es s i v e  s t re  s s 165 k s i  

Bending stress 55 k s i  

F1 ash temperature  - >325 " F 

These design al lowables  do r ep resen t  improvements over' c u r r e n t  des ign  

l i m i t s  of commonly used AMs6265 (AIS1 9310). 

151 S I  f o r  compressive s t r e s s  and 44  - 50 KSI f o r  roo t  stress f o r  101o stress 

cyc le s  depending on t h e  material h e a t  t rea t  procedure.  

P resen t  des ign  l i m i t s  are 136 - 

Some experimental  d a t a  on CBS600, Vasco-X2 Modified and Cartech EX-53 

have ind ica t ed  improvements i n  load c a p a c i t i e s  over the p re sen t  c a p a b i l i t y  of 

AMs6265 although a l l  experimental  d a t a  does not  s u b s t a n t i a t e  t he  h ighe r  capa- 

b i l i t y  of Vasco-X2 Modified (Reference 35). Reference 36 i n d i c a t e s  a bending 

stress improvement of approximately 20% f o r  Vasco-X2; another  source ,  Refer- 

ence 37 ind ica t e s  an improvement of about 24% i n  compressive stress capabi l -  

i t y  when compared to  AMS6265. Addit ional  eva lua t ion  of CBS600 w i l l  be needed 

t o  determine i ts  r e l a t i o n s h i p  t o  AMs6265 s i n c e  Reference 38 i n d i c a t e s  no 

bas i c  d i f f e rence  i n  compressive stress c a p a b i l i t y .  Unreported t e s t i n g  of 

Cartech EX-53 a t  NASA Lewis i n d i c a t e s  t h i s  material  shows a l i f e  improvement 

when compared t o  AMs6265 material .  

A l l  of  these materials have h ighe r  tempering temperature  which should 

move the  threshold  a t  which sco r ing  occurs  upwards from AMS6265. A f l a s h  

temperature  goal has  been e s t a b l i s h e d  a t  325" F because of t h e  h ighe r  temper- 

a t u r e  c a p a b i l i t y  of t he  materials under cons ide ra t ion .  The p resen t  l i m i t  f o r  

low r i s k  is  275' F wi th  MIL-L-7808 l u b r i c a n t  (Reference 39) .  

4.6.3.3 Bearing Design Approach 

For t h i s  design s tudy  an L10 system l i f e  of 15000 h r .  has  been used. 

System l i f e  i s  c a l c u l a t e d  by the  fol lowing equat ion:  
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L = L10 of individual  bearing using cubic mean power 

8 = Weibull s lope constant  of 1.5 which i s  cons is ten t  with General 
E l e c t r i c  engine experience. 

Bearing l i v e s  are ca lcu la ted  using computer programs ava i l ab le  a t  

General E l e c t r i c .  

plying f a c t o r s  of 1 2  f o r  b a l l  bearings and 6 f o r  r o l l e r  bearings were appl ied 

t o  AFBMA l i f e  ca l cu la t ions .  

power gearboxes w i l l  have t o  be developed f o r  gearbox bearings by component 

t e s t ;  mult iplying f a c t o r s  of 1 2  f o r  b a l l  bearings and 6 f o r  r o l l e r  bear ings 

may be too conservat ive.  

have demonstrated mult iplying fac tors  of 30 o r  more. 

AFBMA l i f e  ca l cu la t ions  were used i n  t h i s  study. Multi- 

Multiplying f a c t o r s  cons is ten t  with high horse- 

Main sha f t  bear ings f o r  l a rge  bypass fan engines 

Bearing mater ia l  i s  VIM-VAR M50 which i s  u t i l i z e d  ex tens ive ly  i n  the  

General E l e c t r i c ’ s  l i n e  of engines.  

tough bear ing mater ia l  w i l l  make t h i s  ma te r i a l  a s e r ious  contender f o r  high 

Some recent  encouraging work on f r a c t u r e  

horsepower reduct ion gearbox bearings. 

4.6.4 Descr ipt ion of Detai led Preliminary Designs 

4.6.4.1 Design No. 1 - O f f s e t  Planetary 

Gearbox (1) i s  similar i n  layout to  the  T64 turboprop gearbox. 

design in t en t  w a s  t o  see  what e f f e c t s  the  upscale from 3-4000 SHP (T64 l eve l )  

The 

t o  12,500 SHP (A3ET level) wnc.lc! b v e .  The P2ZT desig:: is shck= i:: P i s w e  

4.6-6. This gearbox design includes a l l  the  lessons  learned from T64 exper- 

ience and incorporates  the  l a t e s t  fea tures  introduced from a long h i s t o r y  of 

development. It does however, have one major d i f f e rence  - the  o v e r a l l  reduc- 

t i o n  gear  r a t i o  which i s  13.44 f o r  the T64 vs the 7 . 8 : l  required by the  APET 

propfan and engine. 

Well es tab l i shed  ma te r i a l s  and lub r i ca t ion  methods a r e  included and an 

adequate space has been a l l o t t e d  t o  accommodate a prop brake. 

bore of 3-inch diameter has been reserved i n  extension of the  prop s h a f t  t o  

t he  extreme a f t  face of the  accessory gearbox, which i s  provided with a 

mounting pad f o r  the  bene f i t  of through-the-shaft p rope l l e r  con t ro l s .  

A f r e e  access  
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Figure 4 . 6 - 6 .  M E T  Gearbox 12500 Shp Offset/Planetary. 
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The p r inc ipa l  c h a r a c t e r i s t i c s  of t h i s  design a re :  

Prop sha f t  rpm: 1104 rpm 

Input rpm: 8660 rpm 

Ratio ( o v e r a l l ) :  7.844:l 

Input ( o f f s e t  r a t i o )  1.5116:l 

P lane tary  Reduction 5.1892:l 

A weight breakdown of t h i s  design i s  shown by Table 4.6-1.. 

Table 4.6-1. Weight Breakdown of APET Offset  
Planetary Reduction Gearbox. 

Weight , 
l b  

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Front housing 
Aft housing + midframe 
Acce s sory d r ive  hous ing 
Propel le r  sha f t  
P lane t  assemblies (4)  
Bull gear  
Input pinion 
Sun gear 
Ring gear  
Ring gear support  
Propshaft  t h r u s t  bearings 
Scavenge and lube pump 

200 
270 

60 
300 
200 
120 

75 
25 
70 
30 
36 
50 - 

1 I - b I I  
I* JU 

c a s t  
c a s t  
c a s t  
forged 
forged 
forged 
forged 
forged 
forged 
forged 

.. 

4.6.4.2 Design No. 2 - Offset Star 

Gearbox (2)  was designed t o  evaluate  a star versus  a p lane t  system, i .e .  

i t  can be d i r e c t l y  compared with gearbox (1 ) .  

4.6-7, a l s o  has space a l loca t ed  f o r  a prop brake and has a f r e e  access  bore 

of 3 inches t o  the  extreme a f t  face of t h e  accessory gearbox. Amounting pad 

i s  provided f o r  a through-the-shaft p rope l le r  con t ro l .  

This gearbox, shown i n  Figure 
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RATK): 
OVERALL 7.807 
OFFSET 1.601 
STAR 6.00 

SCALE INCHES 

Figure 4.6-7.  N E T  Gearbox 12500 Shp Offset/Star. 
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The p r inc ipa l  c h a r a c t e r i s t i c s  of t h i s  design are: 

Prop sha f t  rmp: 1104 

Gearbox Input rpm: 8619 

Ratio (Overa l l ) :  7.807:l 

( 1 s t )  Rat io  (Input-Off Set) :  1.5614 

(2nd) Rat io  ( S t a r ) :  5.00 

A weight breakdown of t h i s  design is  shown by Table 4.6-2. 

Table 4.6-2. Weight Breakdown of APET Offse t  
S ta r  Reduction Gearbox. 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Front housing 
Aft housing + midframe 
Acce ssory d r i v e  housing 
P rope l l e r  s h a f t  
In t e rna l  gear 
S t a r  assemblies (14) 
B u l l  gear  
Input pinion 
Sun gear 
Propshaf t t h r u s t  bearing 
Scavenge and lube pump 

Weight, 
l b  

200 
270 

60 
100 
210 
280 
125 
80 
20 
36 
50 - 

c a s t  
cast 
c a s t  
forged 
forged 
forged 
forged 
forged 
forged 
forged 

4.6.4.3 Design No. 3 - Simple Planetary 

The r a t i o  requirement f o r  a propfan gearbox i s  wi th in  the  c a p a b i l i t y  of a 

s i n g l e  p lane tary  s tage .  

design i s  a s ing le  s tage  in- l ine simple p lane tary .  

Figure 4.6-8. 

no t  poss ib le  i n  t h i s  conf igura t ion  due t o  the  absence of a p a r a l l e l  s h a f t .  

unique f ea tu re  of t h i s  design is that  the  gears a r e  double h e l i c a l .  

The t h i r d  configurat ion se l ec t ed  f o r  a prel iminary 

This design i s  shown i n  

A through-the-shaft access f o r  propel le r  con t ro l  purposes i s  

A 

179 



The pr inc ipa l  c h a r a c t e r i s t i c s  of t h i s  design a re :  

Prop s h a f t  rpm: 1104 

Input rpm: 8587 

Ratio (Overa l l ,  One-step, P lane tary)  = 7.7778:l 

A weight breakdown of t h i s  design i s  given by Table 4.6-3. 

Usually planetary conf igura t ions  a r e  among the  l i g h t e s t  i n  weight,  and 

because there  i s  no input  o f f s e t  s tage  t h i s  design might have been expected t o  

be the l i g h t e s t  of a l l .  

weight of the  f irst  two designs discussed.  

t h a t  the  r a t i o  required,  though s t i l l  wi th in  the  p r a c t i c a l  c a p a b i l i t y  of a 

s i n g l e  s tage  simple p lane tary ,  i s  outs ide  the range where the  p lane tary  per- 

forms t o  bes t  advantage from a weight s tandpoint .  

Such was not t he  case a s  it i s  e s s e n t i a l l y  a t  the  

The p r inc ipa l  reason f o r  t h i s  i s  

Note t h a t  the weight of t h i s  conf igura t ion  includes an i n t e r n a l  p rope l l e r  

brake. The brake i s  shown i n  Figure 4.6-8. As mentioned ear l ier ,  the  gear- 

boxes shown i n  the e a r l i e r  Figures a r e  designed such t h a t  they can accommodate 

a similar type of brake. 

4.6.4.4 Design No. 4 - Double Reduction Tr ip l e  Branch 

The fourth candidate  conf igura t ion  se l ec t ed  f o r  a prel iminary design i s  

the  double reduction t r i p l e  branch gearbox shown i n  Figure 4.6-9. 

weight breakdown of t h i s  design i s  shown by Table 4.6-4. 

double reduction gearbox i n  t h i s  study (double reduct ion ,  double branch; Fig- 

ure  4.6-10),this one i s  rever ted  r a t h e r  than o f f s e t ,  having i t s  input  and 

output  s h a f t s  on the  same c e n t e r l i n e .  As i s  the case with the  simple plane- 

t a r y ,  through-the-shaft access  f o r  a p rope l l e r  con t ro l  mounted on the  r e a r  of 

t he  gearbox i s  not poss ib le .  The screening method r e f e r r e d  t o  i n  Sect ion 

4.6.1.3 ind ica tes  a weight saving a s  the  number of branches is  increased.  

This p a r t i c u l a r  design,  however, d id  not  c a p i t a l i z e  on t h i s  t h e o r e t i c a l  advan- 

tage  as i t  i s  the heavies t  gearbox i n  the study and was the  f i r s t  one r e j e c t e d  

s o l e l y  because of i t s  weight. 

A d e t a i l e d  

Unlike the  o the r  
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Table 4.6-3. Weight Breakdown of APET Simple 
Planetary Reduction Gearbox. 

Weight, 
l b  

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Front housing 
Aft housing 
Accessory d r i v e  housing 
Propel le r  s h a f t  
Planet  assemblies (3)  
Ring gear 
Ring gear support 
Sun gear 
Input s h a f t  
Propel le r  s h a f t  t h rus t  bearing 
Scavenge and lube pump 
Propel le r  brake 

200 
270 

60 
250 
300 
120 
120 
25 
25 
36 
50 
70 

1526 

- 

Table 4.6-4. Weight Breakdown of APET Double 
Reduction Tr ip l e  Branch Gearbox. 

Weight, 
l b  

236 0 Front housing 
0 Aft housing + midframe 440 

- 

0 Accessory d r i v e  housing I 0 Propel le r  s h a f t  
60 

525 
0 3 Forward pinions 157 
0 3 Qui l l  s h a f t s  49 
e 3 Aft gears  
0 Input pinion 
0 Propel le r  t h r u s t  bearing 

306 
36 
36 

0 Scavenge and lube pump 50 

1895 
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F i g u r e  4.6-8. Modern High Horsepower Gearbox 111 (Simple P l a n e t a r y ) .  
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Figure 4 . 6 - 9 .  AEPT Gearbox 12500 Shp Double Reduction T r i p l e  Branch, 
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4.6.4.5 Design No. 5 - APET Dual Branch, Two-Stage Reduct ion Gearbox 

The f i f t h  s e l e c t e d  cand ida te  gearbox is a APET d u a l  branch,  two-stage reduc- 

The p r i n c i p a l  f e a t u r e s  of which are shown by F igure  4.6-10. t i o n  gearbox design.  

This conf igu ra t ion  has  rece ived  f a v o r a b l e  comment i n  recent i n d u s t r y  l i t e r a t u r e  and 

i s  a l s o  t h e  conf igu ra t ion  used by both  t h e  CT-7 and PW-100 turboprops.  

materials are shown by F igure  4.6-11 and t h e  weight summary i s  g iven  by Figure  

4.6-12. 

The 

This  conf igu ra t ion  w a s  sub jec t ed  t o  a r igo rous  weight de te rmina t ion  pro- 

ces s  us ing  t h e  GE computerized graphics  system. See S e c t i o n  4.6.11 f o r  an 

example o f  t h e  weight c a l c u l a t i o n  p rocess .  

Th i s  des ign  w a s  subjec ted  as w e l l  t o  a d e t a i l e d  p re l imina ry  c o s t  estimat- 

i n g  procedure.  The d e t a i l s  of  t h i s  process  are a l s o  t o  be found i n  Sec t ion  

4.6.11. 

4.6.4.6 Design No. 6 - Compound S t a r  

The s i x t h  gearbox conf igu ra t ion  t h a t  w a s  s e l e c t e d  f o r  a p re l imina ry  

des ign  i s  a t r i p l e  branch compound s t a r  l ayou t .  The p r i n c i p a l  f e a t u r e s  of 

t h i s  gearbox a re  shown i n  F igure  4 x - 1 3 .  

t i v e l y  show t h e  m a t e r i a l s  of  t he  p r i n c i p a l  components and t h e  weight summary. 

This  gearbox, l i k e  the  s i n g l e  s t a g e  s imple p l a n e t a r y ,  and t h e  double r educ t ion  

t r i p l e  branch are  i n l i n e  conf igu ra t ions ,  whereas t h e  remainder are a l l  o f f s e t .  

Th i s  des ign ,  l i k e  t h e  o t h e r  i n l i n e  conf igu ra t ions ,  does not  permit  through- 

the-shaf t  access  t o  t h e  p r o p e l l e r  from a r e a r  mounted c o n t r o l .  

F igu res  4.6-14 and 4.6-15 respec-  

Conf igura t ions  5 and 6 were subjec ted  t o  a r i g o r o u s  weight determi- 

n a t i o n  p rocess  using t h e  GE computerized g raph ics  system. 

f o r  an example of t h e  weight c a l c u l a t i o n  p rocess .  

See Sec t ion  4.6.11 

4.6.4.7 Design No. 7 - Coupled P l a n e t a r y  

A conceptual  des ign  as opposed t o  a p re l imina ry  des ign  w a s  made of a 7th 

candida te  conf igu ra t ion .  This  conf igu ra t ion  (see F igure  4.6-16) i s  a coupled 

p l a n e t a r y  o r  a dua l -pa th  p l a n e t a r y  as it i s  sometimes known. The conceptual  

des ign  w a s  used t o  compare with t h e  conf igu ra t ion  of  F igure  4.6-10 (double 
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INPUT 

LLOAD BALANCING BEAU 

Figure 4.6-10. N E T  Dual Branch, Two-Stage Reduction Gearbox. 
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VASCO X 2  MOD ALUMINUM 
OR EOUlV 

AUXILIARY DRIVE 
GEARS-AIS1 9510 

&I BEARINOS-M60 

VASCO X 2  MOD 
OR LOUiV 

VASCO X 2  MOD LSTEEL 
OR EOUlV 

Figure 4.6-11. APET Dual Branch Two-Stage Reduction Gearbox. 
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I t 
HOUSINGS 7 P ~ A r  OUTPUT GEAR 

244 LBS 

P 
r 1 8 . l L B S  

06.4 LBS TWO IDLER GEARS 
126.S CBS EACH 

18.0 LBS 

0 GEARS 
0 BEARINGS 

HOUSINGS 
0 YISC. HARDWARE 186.0 a4.7 LB8 

INPUT GEAR 

. .  
TOTAL 1066.0 LBS 

Figure  4.6-12. APET h a 1  Branch Two-Stage Reduction Gearbox. 
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rop I n t e r f a c e  

Trans Package Drive T r a i n  

Three-S tar Gears 

Figure  4 . 6 - 1 3 .  M E T  T r i p l e  Branch Compound 
S t a r  Reduction Gearbox. 

Vasco X2 Mod 

Titanium - 

M50 (Ty 
Aux i l i a ry  
Drive Tra in  

Gears-AIS1 931 
Bearings-M50 

L V a s c o  X 2  Mod o r  Equiv 

F igure  4 . 6 - 1 4 .  APET T r i p l e  Branch Compound S t a r  
Reduction Gearbox. 
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G.\.* 
% i -  . 

OUTPUT GE 

0 GEARS 
0 BEARINGS 

0 MlSC HARDWARE 1 2 7 . 0  
0 HSGS & CARRIER 377.9 67.7 LBS EACH 

TOTAL 1162.0 LBS 

Figure  4.6-15. M E T  T r i p l e  Branch Compound S t a r  Reduction Gearbox. 

Figure 4.6-16. M E T  Coupled P lane ta ry  Reduction Gearbox. 
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reduct ion,  double branch) fo r  the  purpose of determining the  r e l a t i v e  c o s t  

between the  two designs.  The high par ts  count weighed heavi ly  aga ins t  t h i s  

design,  making i t  among the  most expensive. 

4.6.5 Final Se lec t ion  Process 

4.6.5.1 C r i t e r i a  Affect ing Direc t  Operating Cost (DOC) 

The DOC cost  model developed a s  p a r t  of t h i s  study f o r  the  def ined N E T  

mission was exercised f o r  the purpose of i den t i fy ing  the  s e n s i t i v i t y  of the  

gearbox parameters known t o  a f f e c t  DOC d i r e c t l y .  In  add i t ion ,  t hese  same 

parameters were ranked by experienced gearbox design personnel from the  stand- 

point  of degree of d i f f i c u l t y  i n  achieving a measure of improvement above cur- 

r e n t  l eve l s .  The r e s u l t s  of both exe rc i se s  a r e  shown by Figure 4.6-17. This 

f i g u r e  shows that  weight i s  the  s i g n i f i c a n t  gearbox parameter i n s o f a r  as 

e f f e c t  on DOC with maintenance cos t  and base p r i c e  v i r t u a l l y  t i e d  f o r  a l e s s e r  

but s t i l l  s i g n i f i c a n t  e f f e c t .  

shown by the  char t .  When looking a t  the  absolu te  l e v e l s  of the  e f f e c t  upon 

DOC of the various gearbox parameters,  i t  might seem t h a t  the  gearbox d r i v e s  

DOC very l i g h t l y ,  but  i t  must  be remembered t h a t  the  gearbox is but  a com- 

ponent of t he  propulsion system, not  un l ike  a compressor or power turb ine .  

The l e v e l s  of s e n s i t i v i t i e s  of these  o ther  components a r e  of the  same magni- 

tude a s  the  SDG, and although the con t r ibu t ion  of each i s  s m a l l ,  the  cumula- 

t i v e  e f f e c t  i s  large indeed. The o ther  s i g n i f i c a n t  item i n  Figure 4.6-17 i s  

the  las t  column which ranks the  four v a r i a b l e s  a s  t o  the d i f f i c u l t y  of achiev- 

ing a 10% improvement. 

Power l o s s  has but a small e f f e c t  on DOC as 

When both f ea tu res  of Figure 4.6.4-17 a r e  considered toge ther  they suggest 

where the  emphasis should be placed i n  SDG development. For example, the  

small impact of power l o s s  coupled with the  d i f f i c u l t y  i n  achieving a s i g n i f i -  

cant  improvement suggest t h a t  t h i s  should not be a p r i o r i t y  i s sue .  Of course,  

t h i s  should not be in t e rp re t ed  as  an endorsement of i n e f f i c i e n t  gearboxes, bu t  

r a t h e r  t h a t  t h i s  ana lys i s  suggests  t h a t  i f  invested i n  the  reduct ion  of main- 

tenance c o s t s ,  fo r  ins tance ,  a u n i t  of development e f f o r t  has  the p robab i l i t y  

of producing a much g r e a t e r  pos i t i ve  e f f e c t  on DOC. 

s ion  of how the design can inf luence each va r i ab le .  

Following i s  a discus- 
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9 10% Reduction 
In Gearbox 

lmpad on Aircraft DOC 
of a Change in Gearbox Variables 

Maintenance Cost 

Base Price 

Weight . 

Paver Loss 

Reduction 
in DOC Yields a 

0 

0 

The values for each parameter are expected to l ie within the 
shaded boxes. 
The uncertainty of each value is directly attributed to the 
overall uncertainty of the total DOC. 

Figure  4.6-17. APET Gearbox Economics 
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4 . 6 . 5 . 2  Maintenance Cost 

This is a heavy driver of DOC and it is the area that will probably be I 
I 

responsible for the most significant design practice departures from past 

gearboxes. 
icant reductions in maintenance costs. 

Three approaches are suggested which will produce the most signif- 

1. Modularity 

A modular design of the gearbox itself is a significant departure from 

past practice in SDG'S and will permit greatly reduced maintenance costs. 
Only those functions directly related to the primary job of speed reducing 

(bearings, gears, seals) should be permitted to occupy space within the rel- 

atively inaccessible gearbox housing interior. Items such as scavenge pumps, 
propeller brakes, hydraulic slip rings, etc. should be accessories external to 

the gearbox itself. In addition the installation of the entire propulsion 

system should permit component replacement with minimum disturbance of adja- 

cent items. Modular construction will do little for the overall system reli- 

ability but it will greatly improve the reliability of the SDG itself as fail- 

ures of the accessory modules will not be charged against the-SDG because SDG 

removal and teardown will not be required to repair faults in these other 
areas. Modular construction can have an undesirable effect on weight, as the 
lightest weight designs tend to be associated with integrated construction. 

Overall system reliability may also suffer slightly as, for example, modular 

construction may increase the number of fluid connections that are subject 

to leak. 

I 
I 
I 

2. Condition Monitoring 

Effective vital function and diagnostic instrumentation that is part of 
the original design will be effective in keeping maintenance costs down. 
When combined with modular construction, diagnostic instrumentation in con- 

junction with an appropriate information processing capability will afford 

the ability to fault isolate to an individual line replaceable unit (LRU). 
The goal should be early realization of on-condition maintenance. This will 

demand some minimum complement of vital function instrumentation. 
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3 .  Basic  Design Considerat ions 

The f a c t o r s  he re  t h a t  w i l l  most a f f e c t  maintenance c o s t  are: 

a. Design f o r  long system l i f e .  This  w i l l  s imul taneous ly  enhance 
r e l i a b i l i t y  but  w i l l  come a t  t h e  c o s t  o f  weight and base p r i c e .  

b. Design f o r  a s semblab i l i t y .  Th i s  w i l l  both show t o  advantage i n  
base p r i c e  as w e l l  as i n  overhaul c o s t .  

c .  Low p a r t s  count.  Maintenance c o s t s  are a func t ion  o f  t he  number of 
p i e c e  p a r t s  t h a t  must be stocked, i n spec ted ,  r e fu rb i shed ,  and 
assembled. 

4 . 6 . 5 . 3  Base P r i c e  

Modularity w i l l  g r e a t l y  reduce the base p r i c e  of  t h e  SDG i t s e l f ,  a l though,  

l i k e  weight ,  o v e r a l l  system p r i c e  may be favored by i n t e g r a t e d  des igns .  Mak- 

i n g  t h e s e  d e t a i l e d  t r a d e s  i s  considered beyond t h e  scope o f  t h e  p re sen t  s tudy .  

The f e a t u r e s  of t he  b a s i c  des ign  t h a t  most i n f l u e n c e ' b a s e  p r i c e  are s i m p l i c i t y  

and low p a r t s  count.  

des ign  f o r  easy  assembly are t h e  f a c t o r s  o t h e r  than  t h e  s e l e c t i o n  of an inher -  

e n t l y  low c o s t  c o n f i g u r a t i o n  t h a t  w i l l  be most e f f e c t i v e  i n  c o n t r o l l i n g  base 

p r i c e .  L a s t l y ,  development c o s t s  w i l l  be r e f l e c t e d  i n t o  t h e  base p r i c e .  The 

more complicated conf igu ra t ions ,  p a r t i c u l a r l y  t h e  p l a n e t a r y  u n i t s ,  a r e  t h e  ones 

most l i k e l y  t o  have the  h i g h e s t  development c o s t s .  

S p e c i f i c  a t t e n t i o n  t o  des ign  f o r  p r o d u c i b i l i t y  and 

4 . 6 . 5 . 4  Weight 

T h i s  i s  the  most vexing v a r i a b l e  both because it  is  t h e  l a r g e s t  d r i v e r  

v i  502 and aiso because it i s  d i f f i c u i t  co make s i g n i f i c a n t  ga ins  over  p a s t  

l e v e l s .  I n  a d d i t i o n ,  t h e  bulk o f  t he  p rev ious ly  mentioned d e s i r a b l e  a t t r i -  

bu te s  o f  a modern gearbox (modular cons t ruc t ion ,  des ign  f o r  long system l i f e ,  

added in s t rumen ta t ion ,  and cos t  reduct ions  i n  des ign )  tend t o  a f f e c t  weight 

undes i rab ly .  The most e f f e c t i v e  approaches t o  a l igh tweight  SDG are: 

1. S e l e c t i o n  of a conf igura t ion  t h a t  is i n h e r e n t l y  l i gh twe igh t .  An 
example i s  t h a t  i nc reas ing  t h e  number o f  branches reduces weight.  

2. Employment of  weight saving des ign  f e a t u r e s  and cons t ruc t ion .  An 
example of t h i s  i s  t h e  bui l t -up output  gea r  assembly i n  t h e  double 
branch double reduct ion  conf igura t ion .  
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3 .  The g rea t e s t  opportuni ty  f o r  ga in ,  and the  most chal lenging tech- 
nology, i s  t o  increase  success fu l ly  the  K-value f a c t o r  of the design.  
This w i l l  permit more torque t o  be c a r r i e d  through a given mesh. 
The APET study a c t i v i t i e s  pointed t o  the  following most promising 
avenue s : 

a.  Improved ma te r i a l s  

b. Advanced l u b r i c a n t s  

c .  Revised tooth form. 

4.6.5.5 Power Loss (Eff ic iency)  

The payoff i n  making a breakthrough i n  t h i s  a r e a  w i l l  not be g r e a t .  

i s  recommended is  proceeding with sound engineer ing p r a c t i c e s  and using f u l l y  

the  technology already i n  hand. 

given configurat ion i s  a major concern. 

What 

Reducing the  speed dependent l o s ses  i n  a 

Areas deserving a t t e n t i o n  a re :  

1. Proper j e t t i n g  and app l i ca t ion  of l ub r i can t  t o  introduce only the  
minimum flow necessary and thus reduce churning lo s ses .  

2 .  Good p rac t i ce  i n  e f f e c t i v e  scavenging i s  e s s e n t i a l  t o  remove the  
lubr icant  as soon a s ' i t s  job  i s  done t o  minimize the  energy i t  
w i l l  absorb from r o t a t i n g  elements. 

3 .  Proper use of windage screens ,  b a f f l e s  and i n t e r n a l  c learances  w i l l  
reduce the  windage lo s ses  t o  low l e v e l s .  

4. A novel approach not cu r ren t ly  used i s  t o  reduce o r  modulate the  
lubr icant  flow as a funct ion of torque such t h a t  the  flow i s  never 
i n  excess of what i s  required.  

The configurat ion se l ec t ed  can a f f e c t  the  lo s ses .  Each mesh r ep resen t s  a 

l o s s ,  so s ing le  stage u n i t s  have the  edge over double reduct ion  designs.  

number of branches, however, should have a neg l ig ib l e  e f f e c t  on e f f i c i e n c y .  

The 

4.6.6 C r i t e r i a  with Lesser Effec t  on DOC 

4.6.6.1 R e l i a b i l i t y  

A s  stated i n  Sect ion 4.6.1.1 it is a v i r t u a l  c e r t a i n t y  t h a t  t o  be a com- 

merc ia l ly  acceptable product, a fu tu re  SDG w i l l  have t o  possess a very high 

l e v e l  of r e l i a b i l i t y  much i n  excess  of what has  been exhib i ted  by past  designs.  

A l l  of the candidate gearbox conf igura t ions  have the c a p a b i l i t y  of evolving 
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i n t o  h igh ly  r e l i a b l e  des igns  t h e r e f o r e  i t  i s  not  t h e  i s s u e  a s  t o  which candi- 

d a t e s  possess  the  most inherent  r e l i a b i l i t y  but  i n s t e a d  how d i f f i c u l t  i s  i t  t o  

achieve  a g iven  l e v e l  of r e l i a b i l i t y  with each des ign .  

t r a t e  t he  foregoing  i s  bea r ing  system L10 l i f e .  The express ion  f o r  system 

l i f e  i s  

An example t o  i l l u s -  

L-81 n -lI8 I [Lie + L-8 + - - - 
2 L 

SY S 

where L I , ~  r e p r e s e n t s  t he  L 10 l i v e s  o f  t h e  i n d i v i d u a l  bear ings .  It can be 

r e a d i l y  seen from t h i s  equat ion  t h a t  des igns  having a l a r g e  number of bear- 

i n g s  must have g r e a t l y  e l eva ted  l i f e  f o r  each i n d i v i d u a l  bea r ing  t o  main ta in  

system l i f e .  Designing ind iv idua l  bear ings  t o  t h e s e  high L LO va lues  impacts 

weight and c o s t  g r e a t l y .  The foregoing s t r o n g l y  sugges ts  t h a t  t h e  configura-  

t i o n s  wi th  low p a r t s  count w i l l  have a s i g n i f i c a n t  advantage.  

The seven candida te  des igns  a r e  ranked i n  Table  4.6-5 from t h e  s tandpoin t  

o f  d i f f i c u l t y  i n  des ign  of  achieving a common base r e l i a b i l i t y  goa l .  

Table  4.6-5. Gearbox Design Ranking. 

Conf igura t ion  

1. Offse t  p l a n e t a r y  

2.  Offse t  s t a r  

3. Simple p l a n e t a r y  

4. T r i p l e  branch 

5. Double branch 

6. Compound star 

7. Coupled p l a n e t a r y  

Ranking (h ighe r  number 
i s  more d e s i r a b l e )  
- 

2 

3 

3 

3 

4 

3 

1 

Another approach t o  increased  r e l i a b i l i t y  i s  t h e  proper  use of  v i t a l  

func t ion  and d i a g n o s t i c  ins t rumenta t ion  and suppor t ing  devices  i n  t h e  SDG and 
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i t s  systems. This 

s tudy , however. 

4 . 6 . 6 . 2  

approach i s  considered beyond the  scope of the present  

Front a1 A r e  a 

The various preliminary design gearboxes d i f f e r e d  i n  f r o n t a l  a r ea  which 

I n  the  case of the  has  been a measure of mer i t  i n  some pas t  i n s t a l l a t i o n s .  

APET study,  however, a l l  the  candidate  designs descr ibed i n  Sec t ion  4 . 6 . 4  could 

be contained within the  0 . 3  r a d i u s  r a t i o  propfan nace l l e  designs descr ibed i n  

Sect ion 4 . 7 .  As a r e s u l t ,  f r o n t a l  a rea  w a s  not  used as a c r i t e r i a  i n  choosing 

among the  designs. As a ma t t e r  of i n t e r e s t ,  t he  coupled p lane tary  i s  probably 

the  smal les t ,  and the  por t ions  of the housing ad jacent  t o  the  two l a y s h a f t s  i n  

the  double branch double reduct ion  gearbox described i n  Sec t ion  4 . 6 . 4 . 5  leave 

the  l e a s t  clearance t o  the  nace l l e  ou te r  sk in .  

4 . 6 . 6 . 3  Reverse Rotation 

Opposite ro t a t ion  on oppos i te  engine loca t ions  of a twin engined a i r c r a f t  

with wing mounted t r a c t o r  engines ( t h e  conf igura t ion  of the  APET study a i r -  

plane) i s  viewed as a poss ib le  requirement from the  s tandpoint  of reduced 

cabin noise  or the d e s i r e  fo r  aerodynamic symmetry. Opposite r o t a t i o n  could 

be achieved e i t h e r  by l e f t  and r i g h t  hand gas generators  or by reverse  ro ta -  

t i o n  within the gearboxes. In so fa r  a s  accommodating reverse  r o t a t i o n  require-  

ments wi th in  the gearbox i t  would be noted t h a t  some of the  candidate  gear- 

boxes have output s h a f t  r o t a t i o n  i n  the  same d i r e c t i o n  as the input  s h a f t  

whereas the  remainder have opposi te  r o t a t i o n .  

Table 4.6-6 summarizes gearbox r o t a t i o n .  

One so lu t ion  t o  the problem would be t o  s e l e c t  e n t i r e l y  d i f f e r e n t  con- 

f igu ra t ions  fo r  opposi te  engines,  for example an o f f s e t  s t a r  f o r  the  l e f t  

hand engine loca t ion  and an o f f s e t  p lane tary  fo r  the  r i g h t  hand loca t ion .  The 

obvious disadvantage of t h i s  so lu t ion  i s  t h a t  i t  r equ i r e s  the  development, 

manufacture, and support of two d i f f e r e n t  designs with g r e a t  impact on f i r s t  

c o s t  and maintenance c o s t .  

None of the i n l i n e  or concent r ic  designs i n  Table 4.6-5 (No's 3 ,  4 ,  6 ,  
and 7 )  have the c a p a b i l i t y  f o r  absorbing a p r a c t i c a l  modif icat ion t o  provide 
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Table 4.6-6. Gearbox Rotation. 

Configuration 

1. Offse t  Planetary 

2. Offse t  s t a r  

3. Simple P lane tary  

4 .  T r ip l e  Branch 

5.  Double Branch 

6.  Compound Star  

7 .  Coupled Plane tary  

Input vs .  Output Rotation 

opposi te  

s ame 

same 

same 

s ame 

opposi te  

same 

reverse  r o t a t i o n .  The o f f s e t  designs,  on the  o the r  hand, could be f i t t e d  with 

appropr ia te  i d l e r  gears  i n  the  f i r s t  o r  input  s tage  (where the  torque l e v e l s  

a r e  lowest)  t o  reverse  the  ro t a t ion .  

shown i n  Figure 4.4-15 i s  a l s o  capable of reverse  r o t a t i o n  modif icat ion.  

Figure 4.6-18 shows the  revers ing  i d l e r s  i n  the  var ious  input  s tages .  Gearbox 

weight j u s t  r e s u l t i n g  from the  added p a r t s  would increase  approximately 100 

pounds a s  a r e s u l t  of incorporat ing id l e r s .  There would be an addi t iona l  

weight increase ,  a s  i n  order  t o  hold the  l i n e  on system L 10 l i f e  the increased 

number of p a r t s  would requi re  t h a t  ex is t ing  p a r t s  be redesigned with increased 

ind iv idua l  l i ves .  Gearbox e f f i c i ency  would be impacted by approximately 112% 

which would ac tua l ly  be a 50% increase i n  power l o s s  r e s u l t i n g  from the  addi- 

t i o n  of revers ing i d l e r s .  

The s p l i t  gearbox conf igura t ion  already 

The l ub r i ca t ion  and hea t  exchanger systems would 

a l s o  rece ive  an unfavorable weight impact. 

4.6.6.4 P i t ch  Change Access 

A l l  t he  o f f s e t  designs among the candidates  (1 .  Offse t  p lane tary ,  2 .  Off- 

set s tar ,  and 5 .  Double branch double reduct ion)  have provis ions f o r  through- 

the-shaf t  access t o  the  propel le r  pitch change mechanism from a p rope l l e r  con- 

t r o l  mounted on the  rear of the  gearbox. Unfortunately,  such access i s  not  

poss ib le  i n  any of the remaining designs,  which a re  a l l  concentr ic  o r  i n - l i ne  
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Figure 4.6-18. I n p u t  Stage Reversing Schemes. 
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L ,  

des igns .  

ous p r o p e l l e r  system impl i ca t ions ,  the concen t r i c  des igns  were not  dera ted  

because of t h i s .  A p o t e n t i a l  so lu t ion  t o  t h i s  concern might be the  develop- 

ment of a modern technology a l l - e l e c t r i c  p r o p e l l e r  p i t c h  change system. 

Although i t  i s  recognized t h a t  t h i s  l a c k  of access could have seri- 

4 .6 .7  Se lec t ion  

The o r i g i n a l  f i e l d  of seven conf igu ra t ions  which survived the  pre l iminary  

screening  process  w a s  f u r t h e r  reduced t o  two f i n a l  des igns  t h a t  are recom- 

mended f o r  f u t u r e  s tudy and development. The f i n a l  s e l e c t i o n  was based on 

t h e  DOC e f f e c t  of t he  p r o p e r t i e s  of the va r ious  candida tes .  The candida te  

gearboxes were ranked f o r  each merit category.  

m u l t i p l i e d  by an ad jus t ed  weight ing f a c t o r  t o  o b t a i n  a measure of m e r i t  va lue  

t h a t  is  r ep resen ta t ive  of DOC i m p a c t .  The weight ing f a c t o r s  used are consis-  

The ranking number w a s  then  

t e n t  wi th  t h e  s e n s i t i v i t i e s  shown i n  Figure 4.6-17. The s c o r e s  f o r  t h e  v a r i o u s  

merit  c a t e o g r i e s  were then  t o t a l e d  to  o b t a i n  an o v e r a l l  r a t i n g  va lue  f o r  each 

gearbox conf igura t ions .  The h ighe r  values  r ep resen t  more favorable  DOC impact. 

The t a b u l a t i o n s  are shown by Table  4.6-7. The s e l e c t e d  conf igu ra t ions  are # 5 ,  

t h e  double branch double r educ t ion ,  and No. 6 t h e  compound s t a r .  

Although not  used i n  t h i s  s e l e c t i o n ,  t h e  c r i t e r i a  d i scussed  i n  Sec t ion  

4 . 6 . 6  are a l s o  of g r e a t  i n t e r e s t .  The rankings prev ious ly  developed i n  t h i s  

Sec t ion  a r e  summarized i n  Table 4.6-8. The candida te  wi th  t h e  h i g h e s t  s co re  

(No. 5 )  a l s o  r a t e d  h ighes t  i n  t h i s  t ab le .  

4 . 6 . 8  Design Descr ip t ion  of Two Se lec ted  Designs 

From t h e  mat r ix  of seven gearbox conf igu ra t ions  screened two have been 

s e l e c t e d  as prime cand ida te s  f o r  f u r t h e r  development. These two are an  

o f f s e t  dual branch, two s t a g e  reduct ion  gearbox and an i n l i n e  t r i p l e  branch 

compound s tar  r educ t ion  gearbox. 

4 . 6 . 8 . 1  Offse t  Dual Branch, Two Stage Reduction Gearbox 

The o f f s e t  gearbox a l r eady  shown i n  F igure  4.6-10 con ta ins  t h e  fol lowing 

f e a t u r e s :  
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Table 4 . 6 - 7 .  Gearbox Candidate Rat ing.  

Merit Category ~ 

MerR Values) 

Maint Base Paver 

- 
Weight cost Price Loss 

Table 4 . 6 - 8 .  Gearbox Candidate Rat ing.  

Sn'accept modi- 
ication for reverse 
daion 

YeS 

YeS 

No 

No 

Yes 

No 

No 

hrough-the shaft 
'CM access 

YeS 

Yes 

No 

No 

YeS 

No 

No 

Overall 
Rating 

21.1 

25.3 

268 

19.5 

31.5 

3 4 8  

23.4 

Design for 
Reliability 

2 

3 

3 

3 

4 

3 

1 

11.1 4 6  4 .8 

11.1 6.8 6 .8 

11. 1 68 6 2 3  

5.9 6.8 6 .8 

11.6 9.1 10 . 8  

11.6 6.9 8 2 3  

11.6 2 3  2 1.5 

1 
I 
1 
I 
1 
I 
I 
I 
I 
8 
I 
I 
I 
I 
I 
I 
I 
I 
I 



I 
I 
I 
I 
I 
I 
I 
I 
I. 
I 
I 
I 
1 
E 
1 
I 
I 
I 
I 

0 

0 

0 

0 

0 

0 

A s  

I n h e r e n t l y  high r e l i a b i l i t y  due t o  minimum number of p a r t s .  

P r o p e l l e r  s h a f t  bear ing  span c o n s i s t e n t  wi th  long bear ing  l i f e .  

B u i l t  up output  s h a f t  f ea tu r ing  s e c t i o n a l  p r o p e r t i e s  t h a t  enhance 
s h a f t  s t i f f n e s s .  

High speed a u x i l i a r y  d r i v e  f o r  accesso r i e s  d r i v e .  

Housing t h a t  incorpora tes  i n t e r n a l  lube tank (similar i n  concept t o  
General E l e c t r i c  CT7). 

S t r a i g h t  through prop fan  p i t c h  change mechanism c o n t r o l  access i -  
b i l i t y .  

shown i n  t h e  f i g u r e ,  engine power d r i v e s  a 30T input  p in ion  gear  

which then d r i v e s  two double i d l e r  gears .  It i s  important i n  a multi-branch 

gearbox t o  provide f o r  equal  load shar ing  between t h e  branches.  This  has  

been accomplished i n  s i m i l a r  designs (CT7) by a l lowing  t h e  input  gear  t o  

move along t h e  l i n e  of a c t i o n  u n t i l  equal load sha r ing  has  been achieved. 

There are s e v e r a l  ways o f  accomplishing t h i s ,  one of them being by using a 

double balancing beam which is the  s e l e c t i o n  f o r  t h e  APET gearbox. 

The i d l e r  gears  are a one-piece conf igu ra t ion  with t h e  l a r g e  gear  having 

63 t e e t h  and t h e  smaller gear  having 28 t e e t h .  The 28 t oo th  gea r s  d r i v e  the  

l a r g e  96 t o o t h  output  gear .  

A high speed a u x i l i a r y  d r i v e  i s  provided by meshing a power takeoff  gear  

with one of  t he  63 t o o t h  i d l e r s .  This i n h e r e n t l y  provides  a h igh  speed d r i v e  

wi th  t h e  minimum number of gea r s .  

It  i s  proposed t o  use the  gearbox housing c a v i t y  as a l u b r i c a n t  reser- 

v o i r  with a lube pump d r iven  from the r educ t ion  gear  t r a i n .  The i n t e r n a l  

c a v i t y  of  t h e  housing w i l l  be shrouded t o  minimize windage l o s s e s  due t o  

o i l  churning. 

The gearbox has  an o v e r a l l  gear  r a t i o  of 7.191:l. The gear  arrangement 

has  two s t a g e s  of  reduct ion  and t h e  r a t i o  s p l i t  f o r  t h e  l i g h t e s t  weight w a s  

determined from Figure 4 . 6 - 1 9 .  

width x d i a 2 )  of t he  gearbox versus  t h e  f i r s t  s t a g e  gea r  r a t i o .  

weight the  f i r s t  s t a g e  r a t i o  i s  2 . 1 : l  which has  been used i n  t h i s  s tudy.  The 

second s t a g e  r a t i o  i s  3.428:l. 

This  f i g u r e  p l o t s  t h e  t o t a l  d i s k  volume (S - f a c e  

For  minimum 
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3.0 

Figure 4.6-19. Gearbox Facewidth vs. F i r . s t S t a g e  Ra t io  - 
Parametr ic  Curve. 
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For t h i s  study a standard involute gear too th  system has been u t i l i z e d  

with a zero h e l i x  angle.  This w i l l  r e s u l t  i n  the  lowest bearing loads and 

the  output and input bearings w i l l  not have t o  r e a c t  t h r u s t  loads due t o  

h e l i x  angle.  

as f u t u r e  refinements a r e  introduced the  f i n a l  design cons idera t ion  of too th  

geometry must consider a t  l e a s t  the  following: 

Some of the o ther  gearboxes s tud ie s  did use h e l i c a l  gears  and 

0 High p r o f i l e  contact  r a t i o  gearing which could increase  the  
Hertzian stress c a p a b i l i t y  of the gear  set by approximately 30%. 
This type of gear ing has  been used very successfu l ly  on the  NASA 
QCSEE engine but i s  very sens i t i ve  t o  load shar ing between t e e t h  
s ince  the  bending s t r e s s  capab i l i t y  of ind iv idua l  t e e t h  i s  less than 
standard t e e t h  ( see  Reference 43). 

0 Hel ica l  gear ing with a face over lap  r a t i o  over two t o  reduce both 
the  bending and Hertzian s t r e s s  i n  the  gear t e e t h .  Loads i n  the  
double i d l e r  would be balanced by properly s e l e c t i n g  the  h e l i x  angle  
of each s tage .  
may be advantages. 
can t ly  a s  wel l .  

The bearing loads would be higher  but o v e r a l l  t he re  
This i s  expected t o  reduce gear  noise  s i g n i f i -  

Preliminary s t r e s s  ana lys i s  has  been performed on the  gears  u t i l i z i n g  

American Gear Manufacturing Association Standards (AGMA) 210.02, 220.2 and 

217.01. A computer program developed a t  General E l e c t r i c ,  which includes AGMA 

ana lys i s  design equat ions,  was used in the  ana lys i s .  The gear s t r e s s e s  shown 

i n  Table 4.6-10 have not been modified by any f a c t o r s  given i n  the  AGMA s tan-  

dards ( o v e r a l l  dera t ion  f a c t o r  = 1.0) .  

A s  can be seen i n  Table 4.6-9, the compressive s t r e s s  w i l l  be the  c r i -  

t e r i a  t h a t  w i l l  s i z e  the  f i n a l  design. 

Computer techniques were used t o  determine the  bearing loads and load 

d i r e c t i o n  f o r  each gear.  Figure 4.6-20 shows the  graphic output from t h i s  

computer program f o r  the  63/30 tooth i d l e r  gear .  

and l i f e  summary i s  given i n  Table 4.6-10. 

been ca l cu la t ed  f o r  the  nine bearings i n  the  system. Individual  bear ing l i v e s  

were ca l cu la t ed  u t i l i z i n g  Anti  F r i c t ion  Bearing Manufacturers Associat ion 

(AFBMA) methods by computer techniques long es tab l i shed  a t  General E l e c t r i c .  

The lowest ind iv idua l  bear ing l i f e  i s  27200 hours using o v e r a l l  l i f e  m u l t i -  

p lying f a c t o r s  of 6 and 12 f o r  r o l l e r s  and b a l l  bear ings,  r e spec t ive ly .  

The bearing conf igura t ion  

A system l i f e  of 15000 hours has  
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Table 4.6-9. Gear S t r e s ses  f o r  Of f se t  Dual Branch Two 
Stage Gearbox. 

No. Teeth 

- Pinion 

- Gear 

Diametral P i t c h  (PI 

Pressure Angle (degree) 

Face Width (F) 

K Factor 

Compressive S t r e s s  (KSI) 

Unit Load (UL) 

Bending S t r e s s  (KSI) 

Flash Temp. Index (OF) 

Stage 1 

30 

63 

5.00 

22.5 

4.80 

81 1 

161 

16500 

39.3 

325 

Stage 2 

28 

96 

3.738 

22.5 

5.85 

7 84 

16 1 

17000 

40.5 

313 

The K f a c t o r  and' Unit Load (UL) a r e  defined as follows: 

WT 
F UL = - x P  

WT = Tangential  Driving Load 

MG = Gear Ratio (>1) (use - f o r  i n t e r n a l  gear  mesh) 

D = No. Teeth/P = Pi t ch  d i a .  of smaller gear 



Idler Gear Bearing Reactions 

F i g u r e  4.6-20. N E T  Dual Branch Two-Stage Reduct ion Gearbox. 
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Using the  gears and bear ings designs shown i n  Tables 4.6-9 and 4.6-10 

and the  mater ia ls  shown i n  Figure 4.6-11 the  gearbox was ca lcu la ted  t o  weigh 

1068 lbs .  

4.6.8.2 I n l i n e  T r i p l e  Branch Compound S t a r  Reduction Gearbox 

The i n l i n e  gearbox conf igura t ion  shown i n  Figure 4.6-21 conta ins  the  fo l -  

lowing fea tures :  

0 Simple compact kinematic arrangement. 

0 Propel ler  s h a f t  bear ing span cons i s t en t  with long bear ing l i f e .  
Span i s  increased by mounting a f t  bear ing i n  the  s t a r  gear  c a v i t i e s .  

0 Float ing r ing  and sun gear f o r  gear too th  load shar ing .  

0 Trip le  branch f o r  inherent  gear too th  load shar ing.  

0 High speed a u x i l i a r y  d r i v e  f o r  accessor ies  dr ive .  

0 Access t o  hydraul ic  p i t ch  change system t r a n s f e r  bear ing through 
s ta t ionary  gea r  c a r r i e r .  

As shown in the  f i g u r e ,  engine power d r ives  a 33T input  pinion gear 

which dr ives  three double i d l e r  gears.  

d r ive  a la rge  87T i n t e r n a l  gear .  The i n t e r n a l  gear i s  sp l ined  t o  the  propel- 

ler  output shaf t .  

mounted i n  the  i d l e r  gear c a r r i e r  t o  maximize the  bear ing span d i s t ance .  A 

s t i f f  two piece c a r r i e r  i s  used t o  allow assembly of the  i n t e r n a l  gear pas t  

t h e  forward bearings of the  th ree  i d l e r  gears .  

by " f loa t ing"  the i n t e r n a l  gear u t i l i z i n g  th ree  p l ane t s ,  and allowing the  

input  gear t o  center  between the  th ree  i d l e r  gears  by the  use of f l e x i b l e  

couplings. 

These three  equal ly  spaced i d l e r  gears  

The p rope l l e r  output s h a f t  a f t  r o l l e r  bear ing has been 

Load shar ing  i s  accomplished 

A one piece design i s  shown fo r  the  33/66 i d l e r  gear .  Whether machined 

a s  one p iece ,  or providing f o r  an in-process i n e r t i a  or EB weld between the  

two gears  w i l l  have t o  be evaluated as the  design progresses.  

An important cons idera t ion  for the  assembly of a "s ta r"  gear arrangement 

is  the  proper s e l ec t ion  of t e e t h  numbers; t h i s  w i l l  have t o  be optimized along 

with s t r e s s  and scor ing  cons idera t ions .  
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I Number 

Elements 

Table 4.6-10. 

Dynamic Load 
Capacity (Lbs) 

APET Dual Branch Two-Stage Reduction 

n 

20 

18 

Gearbox. 

154000 20170 

55300 6390 

Bea I: in& Configuration 
6 LiLe Sunsnary 

POS. Uean Dla. 
(Inches) 

- 
7.96  

7.84 

7.96 

12.10 

12.44 

Element Size 
(Inches) 

- 
1.38x1.38 

.79x.79  

1.18x1.18 

1.50x1.50 

1.68 Dia. 

BXG System 
Li fe  = 15000 Hr 

- I -  1 - 

14 I 107c80 I 10900 3677 

3677 

1073 

1013 

1073 

B10 Life 
(Hours) 

2 00000 

2 00000 

56000 

144000 

47600 

L i L u u  

120800 

I 
I 

2 07 



t 43.33 

12500 HP 

F i g u r e  4.6-21. M E T  T r i p l e  Branch Compound S t a r  Reduct ion Gearbox. 
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The design shown i n  the  f i g u r e  a l so  provides a high speed accessory d r ive  

a t  an angle  of 30" from the  hor izonta l .  

based on the  loca t ion  of the  accessory gearbox i n  the  nace l l e .  

The o f f s e t  angle w i l l  be se l ec t ed  

Stage 1 
33 
66 

5.077 
22.5 
2.90 

774 

This gearbox has  an o v e r a l l  gear r a t i o  of 7.25:l  with the  f i r s t  s tage  

r a t i o  being 2.00:l and the  second stage being 3.625:l .  

Stage 2 
24 
87  

3.230 
22.5 
2.90 
572 

I n  t h i s  gearbox, a s  i n  the  o f f se t  gearbox, a s tandard involu te  gear  too th  

system with zero h e l i x  angle  has been designed. Consideration w i l l  have t o  be 

given t o  u t i l i z i n g  high contact  ra t io  gear ing or h e l i c a l  gear ing,  i n  any fur- 

t h e r  development e f f o r t .  

Preliminary s t r e s s  ana lys i s  has  been completed on the  gears  using AGMA 

s tandards f o r  ca l cu la t ion .  The gear s t r e s s e s  a r e  shown i n  Table 4.6-11 with 

an ove ra l l  de ra t ion  f a c t o r  of 1.0. 

Table 4.6-11. Gear S t r e s ses  f o r  I n l i n e  Tr ip l e  Branch Compound 
S t a r  Reduction Gearbox. 

No. Teeth 
- Pinion 
- Gear 
Diametral P i tch  ( P )  
Pressure Angle (degrees)  
Face Width (F) 
K Factor  
Compressive S t r e s s  (KSI)  
Unit Load (UL) 
Bending S t r e s s  (KSI) 
Flash Temperature (OF) 

For t h i s  design the compressive s t r e s s  w i l l  be the  s i z i n g  c r i t e r i a .  

Shown i n  Table 4.6-12 are the  bearing conf igura t ions  and the  l i f e  sum- 

mary. For t h i s  gearbox arrangement the sys t em l i f e  ca l cu la t ed  t o  be 17500 

hours. The lowest ind iv idua l  l i f e  i s  52000 hours. Since the  system l i f e  i s  
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Bearing 

C L i f e  

Load 
(Lbs) 

- 
- 
- 

7080 

9020 

8550 

6390 

8550 

0 0  
0 - 

0 00 

- - - I 

Configuration 

Summary 

Speed B10 L i f e  
(Rpm) (Hours) 

7727 ~200000 

7727 ~ 2 0 0 0 0 0  

7727 >200000 

3864 78260 

3864 71950 

1066 52000 

1066 121600 

1066 673700 

Brg. System 

L i f e  = 17500 Hr 

Table 4.6-12. APET T r i p l e  Branch Compound S t a r  Reduction Gearbox. 

I 
d 

Pos. Hean Dia. 
(Inches) 

12.44 

12.00 

Element S i z e  
(Inches) 

1.30x1.30 

1.46x1.46 

.83x.83 

1.68 Dia. 

1.34x1.34 

Number Dynamic 
Elements Capacity 

78570 

97600 

58090 

55300 

13340 
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a func t ion  of t he  ind iv idua l  bear ing  l i v e s  and the  number of bear ings t h e  

i n d i v i d u a l  bear ing l i v e s  have t o  be higher  i n  the  i n l i n e  des ign  when compared 

t o  t h e  o f f s e t  design because t h r e e  add i t iona l  bear ings  are r equ i r ed .  

Using the gea r s  and bear ing  designs shown i n  Table 4.6-11 and 4.6-12 and 

t h e  materials shown i n  Figure 4.6-14 t h e  gearbox was ca l cu la t ed  t o  weigh 1162 

l b s .  

4.6.9 Lubr ica t ion  

Current  U.S. turboprop engines  genera l ly  use the  same type of o i l  i n  t he  

power t ransmiss ion  (gearbox) as i s  used i n  the gas- turbine,  i n  a shared l u b r i -  

c a t i o n  system which, i n  some cases ,  is a l s o  used i n  the  p r o p e l l e r  p i t c h  change 

mechanism. The o i l  s p e c i f i c a t i o n s  used are f o r  low-viscosi ty  MIL-L-7808 

or MIL-L-23699, which o i l s  are more d i r e c t l y  t a i l o r e d  t o  the  high temperature  

requirements  of engine main s h a f t  bear ings.  

i s  favored i n  t h e  s e l e c t i o n  made. 

Thus the  engine,  no t  t he  gearbox, 

I d e a l l y ,  gea r  systems would be b e t t e r  l ub r i ca t ed  by a h ighe r  v i s c o s i t y  

o i l  - which could a l s o  have boundary a d d i t i v e s  t o  inc rease  t h e  maximum load 

capac i ty  of t he  gear  sets and thus  a non-shared l u b r i c a t i o n  system has  obvious 

merits. 

a t tempt  being made t o  answer t h e  following ques t ion :  

This s tudy has  t h e r e f o r e  concentrated on a non-shared system wi th  an 

"Can Synthe t ic  o i l s  be s e l e c t e d ,  or formulated,  t o  accept  much h igher  

gear  mesh loads than MIL-L-7808 (or MIL-L-23699) a t  bulk o i l  temperatures  

approaching 300" F?" 

The TELSGE computer program (Reference No. 4 4 ) , h a s  been used, t oge the r  

wi th  o t h e r  a n a l y t i c a l  techniques,  t o  provide a s t rong  d a t a  base  f o r  f u t u r e  

e f f o r t s .  Comparisons have been made wi th  an empir ica l  d a t a  base from T64 sun 

and p l ane t  gear  s e t s  when l u b r i c a t e d  wi th  MIL-L-7808 o i l  ope ra t ing  through a 

range of  e leva ted  temperatures .  

r e l a t i o n  wi th  Elastohydrodynamic Theory ( E m )  f o r  e x i s t i n g ,  known, v i s c o s i t y  

versus  temperature behavior f o r  sur face  f i n i s h  of gears  i n  t h e  range of  cur- 

r e n t  manufacturing c a p a b i l i t y ,  var ious  input  parameters w e r e  modified accord- 

ing  t o  the  c h a r a c t e r i s t i c s  of some newer, s y n t h e t i c ,  o i l s .  

Having e s t a b l i s h e d  a good T64 gearbox cor- 

The e f f e c t s  of 
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increas ing  hypothe t ica l  v i s c o s i t y  of e x i s t i n g  o i l s  has  a l s o  been s tud ied  

and compared with r e s u l t s  obtained from running t h e  programs wi th  the  quoted 

c a p a b i l i t i e s  of some experimental  l u b r i c a n t s .  

be low: 

Some conclus ions  are l i s t e d  

1. Good agreement e x i s t s  among t h e  following: 
t h e  point  of gear  s e t  su r face  d i s t r e s s  wi th  high temperature  l u b r i -  
can t s ;  t h e  TELSGE a n a l y t i c a l  p rocess ;  t h e  method of Wellauer and 
Holloway (Reference 41) 

Actual T64 t e s t i n g  up t o  

2.  The minimum s p e c i f i c  EHD f i l m  th i ckness  has  been e s t a b l i s h e d  f o r  t he  
T64 sun and p l a n e t  gears .  

3 .  An Emgard EP 75W-90 ("Frigid Go") l u b r i c a n t  appears  t o  have a good 
balance of phys ica l  p r o p e r t i e s ,  c o s t  and near-term a v a i l a b i l i t y  for 
high-performance gear  t ransmiss ions .  

4. Other good cand ida te s  may be a v a i l a b l e  from formula t ions  of high- 
v i s c o s i t y  s y n t h e t i c  esters, p a r a f f i n i c  hydrocarbons,  and per f luo-  
r ina t ed  polye thers .  

These conclusions are t e n t a t i v e  and experimental  programs should be i n s t i -  

t u t ed  perhaps using an advanced des ign  of d i s c  type tes t  machine, t o  e v a l u a t e  

load ca r ry ing  capac i ty  wi th  a d d i t i v e  e f f e c t s .  

4.6.10 Heat Exchanger System Design 

The a i r - to -o i l  h e a t  exchanger s tud ied  f o r  t h e  APET a p p l i c a t i o n  i s  a 

Hughes-Treitler des ign  wi th  a 319 sq .  i n .  a i r f l o w  c r o s s  s e c t i o n .  For t h e  

nacelle-mounted i n s t a l l a t i o n  t h e  h e a t  exchanger has  been loca ted  i n  t h e  lower 

po r t ion  of t h e  engine n a c e l l e  near  t h e  engine i n l e t  i n  an  area which would 

otherwise be unoccupied. The design s e l e c t e d  f o r  t h e  e x t e r n a l ' n a c e l l e  shape 

accommodates the i n l e t  and t h e  exhaust nozz le  and t a i l o r s  t h e  system e x t e r n a l  

l i n e s  as c lose ly  as poss ib l e  t o  bas i c  n a c e l l e  contours  t o  minimize a d d i t i o n a l  

drag  whi le  incorpora t ing  t h e  requirements  of the  i n l e t  f lowpath and hea t  

exchanger volume. 

The h e a t  exchanger shape chosen f o r  t h i s  n a c e l l e  l o c a t i o n  i s  an annular  

The r a d i a l  depth l i m i t  of segment wi th  i t s  c e n t e r  on the  engine c e n t e r l i n e .  

t h e  h e a t  exchanger w a s  determined by cons ide ra t ion  of t he  i n l e t  contour  and a 
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two inch clearance envelope between the heat  exchanger and engine envelope. 

This  r e s u l t s  i n  an annular depth of 15.3 inches. Combined with the  319 sq.  i n .  

cross-sect ional  a rea ,  t h i s  would correspond t o  a segment a r c  of 54.4". However, 

t he  a r c  l i m i t  of the annular segment is s e t  by a d e s i r e  not t o  extend the  hea t  

exchanger beyond the engine i n l e t  c i rcumferent ia l ly .  This a r c  was computed t o  

be approximately 90". 

depth,  i nd ica t e s  the  a r c  length  i s  favorable because i t  allows the  s h o r t e s t  

o v e r a l l  pod length fo r  a smooth blend from ex te rna l  pod contour t o  engine 

n a c e l l e  contour. 

t o  be 10.21 inches f o r  the  se lec ted  90" a r c  segment. 

An evaluat ion of the  two l i m i t s ,  a r c  length vs.  r a d i a l  

The r a d i a l  depth of t h e  annular segment was thus determined 

The hea t  exchanger exhaust duct contour i s  designed f o r  the  M.8/35K f t .  

The a i r f low,  temperature and pressure of the  hea t  exchanger c r u i s e  condi t ion.  

a t  t h i s  condi t ion were used t o  determine nozzle ex i t  area of 16.98 in.2.  The 

extremely low duct Mach numbers, l e s s  than 0.1,  make i n t e r n a l  duct l o s ses  

l a r g e l y  in sens i t i ve  t o  duct  contour;  and f o r  t h i s  reason, a duct having a 

smooth t r a n s i t i o n  from the  hea t  exchanger t o  the  nozzle e x i t  w a s  considered 

s u f f i c i e n t .  

exchanger and t h e  ex te rna l  contour,  i .e. ,  4.6 inches,  and the  d e s i r e  t o  keep 

weight down, the  i n t e r n a l  duct lower sur face  contour has  been designed t o  

r ap id ly  approach the  ex te rna l  contour. 

duct/pod could be fabr ica ted  from a s ing le  shee t  of ma te r i a l .  

contour change has ,  as already mentioned, l i t t l e  e f f e c t  on the  i n t e r n a l  duct 

l o s ses  due t o  low duct  Mach numbers. The flow, temperature and pressure  of 

the hea t  exchanger system at  the takeoff condi t ion were used t o  determine the  

maximum required nozzle e x i t  a rea  of 72.62 in .2 ;  and a hinge pos i t i on  on the  

duct/pod w a l l  f o r  nozzle a r e a  va r i a t ion  has  been se lec ted  t o  minimize angular 

r o t a t i o n  of t he  nozzle and keep the  exhaust flow a t  takeoff  (open area)  

a x i a l l y  a l igned.  

. 

Due t o  the  r e l a t i v e l y  large r a d i a l  spacing between the  hea t  

In  t h i s  way, the  a f t  por t ion  of the  

The shape 

Heat exchanger system l o s s  ca l cu la t ion  procedures are d e t a i l e d  i n  

Appendix I. 

se l ec t ed  hea t  exchangers. 

Also included i n  t h i s  Appendix a r e  diagrams and f i g u r e s  f o r  t he  

. 213 



4.6.11 Cost and Weight Estimating Methodology 

4.6.11.1 Gearbox Costs 

The APET double branch, double reduction offset gearbox design was manu- 

facturing cost-evaluated by General Electric's Advanced Value Process Engi- 

neering personnel. 

scrutiny, and in the case of decisions to "make" a manufacturing process plan 

was set up and run on the computer.. In the case of "buy" decisions, vendors 

costs for similar items were used. All the estimates were made in 1982 

Each individual part was subjected to a "make or buy" 

dollars. 

0 

0 

0 

0 

0 

0 

0 

Variables used included: 

Labor Rate 

Direct and indirect overhead costs 

Year Dollars 

Manufacturing lot size 

Percent variance 

Percent rework 

Percent scrap 

Certain assumptions were made regarding the selected materials in the parts, 

especially with regard to wall thickness of the gearbox castings, coring of oil 

delivery and scavenge passages, forgability, castability and machineability. 
These assumptions were cross-checked against specifications for similar produc- 

tion parts for production costs. 

A manufacturing price, based on the 250th unit (manufactured as an ele- 
ment of a production batch of 20) was estimated to be 183K dollars. This 

price does not include amortization of R&D including development testing, 

facilities costs, design costs, etc. However, the price as defined above is 

considered to be surprisingly reasonable for an advanced production gearbox, 

and certainly does not appear to be a negative factor in the development of 

the high horsepower turboprop system. The true selling price of the gearbox, 
with all the development and test costs properly allocated would be expected 

to add between 70 and 80 percent to the quoted manufacturing price for a 

production run of 1000 gearboxes. 
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4.6.11.2 Weight Determination 

The gearboxes descr ibed i n  Sections 4.6.4.5 (double branch, double reduc- 

t i o n )  and 4.6.4.6 ( t r i p l e  branch, compound s t a r )  were both subjected t o  a very 

r igorous  weight determining process .  

the  GE ' Interact ive Graphics System (IGS). A computer program would then per- 

form a volume ca l cu la t ion  of the  par t  and then c a l c u l a t e  the  weight using the  

appropr ia te  mater ia l  dens i ty .  Where appropr ia te ,  cen ters  of g rav i ty  and 

moments of i n e r t i a  were a l s o  calculated.  The r e s u l t s  of the ind iv idua l  p a r t s  

ca l cu la t ions  were tabulated by hand t o  produce the  o v e r a l l  gearbox weight and 

cen te r  of g rav i ty  loca t ion .  

gea r sha f t  (one of the  two l aysha f t s )  i n  the  double reduct ion double branch 

gearbox described i n  Sect ion 4.6.4.5. 

of a por t ion  of the  computer pr in tout  showing the  ca l cu la t ed  weight of t h i s  

p a r t .  Table 4.6-13 i s  a worksheet which t abu la t e s  a l l  the  weights and cen te r  

of g rav i ty  loca t ions .  

f o r  the  item 11 gearshaf t  t abula ted  i n  add i t ion  t o  those of many o the r  p a r t s .  

Every major component was entered i n t o  

Figure 4.6-22 i s  a copy of the  IGS p l o t  of i t e m  11 

The lower ha l f  of the Figure i s  a copy 

The worksheet page chosen for inc lus ion  has the  da t a  

ITEM @ (GEAR) OF DOUBLE BRANCH GEARBOX 

IGS Plot Used for Weight Calculation 

Gear Pitch C i r c l e A  

ROTATED CROSS SECTION - DENSITY = 0.2890 LE. PER CU. I N .  
W T  - 126.4300 LBS. (57347.71 G M )  
Xff i  20.5675 IN. FROn X-REF 
IXX - 2430.6372 LB. I N  2 ABOUT X-AXIS 

IWO - 58322.3515 LB. I N .  2 ABOUT X-REF 
I W  - 4839.8500 LB. I N .  2 ABOUT XCG 

SURF - 1302.38% IN. 2 (ALL EXPOSED SURFACES) 
VOL - 437.4742 IN. 3 

Figure 4.6-22.  MET Gear And S h a f t  Example. 
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Table 4 . 6 - 1 3 .  Calcu la t ion  of APET Double Branch Gearbox T o t a l  Weight and 
C.G. Locat ion.  

32.095 

5.485 

24.705 

42.070 

145.134 

14.435 

7.028 

4 . 6 U  

4.398 
5.270 

126.430 

126.430 

3.031 
3.035 

1.940 

1.940 
2.647 

4.839 

2.021 

1.250 

3.382 

3.382 

2.444 

2.444 

2.105 

2.105 

75.703 

Identif  ica C ion 

1* 

2. 

3* 
4* 

S* 

6 
7 

8* 

10' 

1l.t  

9 

l lb*  

12. 

12b 

13. 

13b 
14. 

1s 
16 

17. 
18. 

18b 
19. 

19b 
20.f 

2Obf 

'itotatily part 

5.092 
3.017 

21.441 

13.231 
15.228 

6.398 

8.768 

11.923 
3.102 

29.165 

20.568 

20.568 
10.579 

10.579 

11.359 
11.319 
31.375 

27.182 

26.270 

28.920 
28.342 

28.342 

27.713 

27.713 

9.271 

9.271 

Wownclature 

Shaft, Upperllocvard 

seal ,  R e t .  

Shaft Extension 

Shaft 

Ccar 

Seat, Bearing 

Retainer, h a r i l y  

Nut, Shaft 

Seal, sta. 

Gear 

Gear 
&at, Bearitq 

Seat, Beariw 
Retainer, W a r i l y  

Retainer. Wari ly  
Ccar 

Seat, b a r i l y  

Retainer. Wari ly  

Ikt, Shaft 
&at,  b a r i w  

Seat, b a r i l y  
Retainer, Wari ly  

k t a i n e r ,  Bearins 

Nut, Shaft 

Nut, Shaf t 

- 
h t e r i a l  

Titanium 

Steal 
T i t a n i u  

Ti t a n i u  
Steel 

Steel 
Steel 
Steel 

Steel 

Steel 

Steel 

Steel 
Steel 

Steel 
Steel 

Stee l  

Steel 

Steel 

Steel 

Steel 

Steel 

Steel 

Steel 

Steel 

Steel 

Steel 

- 
!.l R W  OB0230 We 

w i g h t  I xa: 
t Gearbox 

Wlisht XCC 

163.428 

16.548 
529.700 

5 56.628 

2210.100 

92.355 

61.622 

51.490 
13.643 

153.700 
2600 .412 

2600.412 

32.107 
32.107 

22.036 

22.036 
83 .os0 

131.134 

53.092 

65.070 
95.853 

95.853 

67.731 

67.731 

19.515 

19.515 

9861.268 

YCC 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

. 6.699 

-13.738 

-1 3.738 
-13.738 

-1 3.7 38 
-1 3.738 

-13.738 
0.00 

0.00 

0.00 

0.00 

-13.738 

-13.738 

-13.738 

-1 3.7 38 
-1 3.738 

-13.738 

Weight YC6 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

-35.304 
-1 7 36 .895 

-1736 .895 
-41.695 
-41.695 

-26.652 

-26.612 
0.00 

0.00 

0.00 

0.00 
-46.462 

-46.462 

-33.576 

-33.576 

-28.918 

-28.918 

-3863.700 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

-4.535 

-9.30 

+9.30 

-9.30 
+9.30 

-9.30 
+9.30 
0.00 

0.00 

0.00 

0.00 

-9.30 
+9.30 

-9.30 

+9.30 

-9.30 

+9.30 

Wight ZCG 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

-23.899 

-1175.799 
+1175.799 

-28.226 

*28.226 
-18.042 
+18.042 

0.00 

0.00 

0.00 

0.00 

-31i453 

+31.453 

-22.729 

+22.729 

-19.577 

+19.577 

-23.899 
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4.7 NACELLES AND NACELLE TECHNOLOGY 

4.7.1 Turboprop In t roduc t ion  and H i s t o r i c a l  Survey 

It i s  appropr i a t e  t o  review previous i n s t a l l a t i o n s  of turboprop engines  

( p a r t i c u l a r l y  t h e  high horsepower systems) f o r  guidance i n  s e l e c t i n g  n a c e l l e  

technology l e v e l  and des ign  methodology f o r  t h e  h ighe r  speed prop-fan i n s t a l -  

l a t i o n s .  The two (Western World) high volume product ion turboprop engines  

i n  t h e  "over 4000 shp" c l a s s  have been t h e  DDA T56 family and t h e  R-R "Tyne" 

fami ly ,  wi th  t h e  l a t t e r  engine  producing over  6000 shp i n  c e r t a i n  models. 

The T56 i s  noted p r imar i ly  f o r  i t s  use  on a l l  t h e  v a r i a n t s  of t h e  

Lockheed C130 (Hercules)  a i r c r a f t ,  the  Lockheed P3 (ORION) ASW Navy a i r c r a f t ,  

t h e  Lockheed "Electra"  commercial a i r c r a f t ,  and, i n  lesser numbers, on t h e  

Grumman E2C (Hawkeye), Ea r ly  Warning A i r c r a f t ,  t h e  Grunman C2 (Greyhound, 

COD) a i r c r a f t ,  and a number of conversions of t he  Convair 340 and 440 series 

a i r c r a f t  t o  commuter r o l e .  

The Tyne has  been used i n  t h e  Vickers "Vanguard" commercial a i r c r a f t ,  

t h e  CL44 M i l i t a r y  and Commercial Cargo a i r c r a f t ,  t h e  Short  "Belfast"  M i l i t a r y  

t r a n s p o r t  a i r c r a f t ,  t h e  Breguet "Atlantique" ASW a i r c r a f t ,  and t h e  Franco- 

German "Transa l l "  M i l i t a r y  Transport .  

expor t  ve r s ions  of  t h e  F i a t  G222 M i l i t a r y  Transpor t .  

I n s t a l l a t i o n s  have a l s o  been made on 

The T56 i n  gene ra l  has  used three- and four-bladed p r o p e l l e r  conf igura-  

t i o n s  i n  t h e  13- t o  14-feet-diameter range,  and wi th  a c t i v i t y  f a c t o r s  i n  t h e  

160 t o  185 band. The Tyne has  used 14-foot d iameter  four-bladed p r o p e l l e r s  

on the Vanguard, 1 6 - f m t  d i m e t e t  four-bladed prnpellers "" the  CL44, the 

B e l f a s t  and t h e  At l an t ique ,  and 18-foot d iameter  four-bladed p r o p e l l e r s  on 

t h e  T r a n s a l l .  

pe l le rs  and l i e  i n  t h e  125 t o  145 range. 

A c t i v i t y  f a c t o r s  have been g e n e r a l l y  lower than t h e  T56 pro- 

F igure  4.7-1 shows a ske tch  o f  t he  T56 i n s t a l l a t i o n  i n  t h e  E l e c t r a  a i r -  

p lane  ( inboard l o c a t i o n  i s  shown). The E l e c t r a  inc luded  wing and n a c e l l e  

s t r u c t u r a l  changes introduced as a r e s u l t  of t h e  f a i l u r e s  which occurred due 

t o  p rope l l e r /nace l l e /wing  w h i r l  f l u t t e r  i n s t a b i l i t y  d iscovered  i n  s e r v i c e  

on t h e  e a r l y  models. Noteworthy i n  t h i s  i n s t a l l a t i o n  are t h e  o f f s e t  gear-  

box arrangement with s t r u c t u r a l  i n t e rconnec t ion  t o  t h e  forward frame of t h e  
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structural entity, and large side-mounted Vee braces are used to react the 

vertical and torque loads from the propeller gearbox back to the nacelle 

structure. Propeller induced side loads are reacted by a smaller Vee brace 

in plan view that interconnects the propeller gearbox with the nacelle struc- 

ture. Dual redundant mounts also attach to the top of the propeller gearbox 
and these react combination loads to the shell structure surrounding and 

including the engine air inlet. The engine rear casing is also provided with 

steady mounts to react vertical and side loads in a redundant mounting system. 

The center drive housing is one element in the engine-to-gearbox 

A typical Tyne installation is shown in Figure 4.7-2. It may be noted 
that the installation is almost "dominated" by the tubular mount' structure 

to the nacelle. In addition to the main mounts which are reacting loads at 

Plane A in the figure, a redundant reaction load path for loads in any direc- 

tion (except along or parallel to the thrust axis) is provided at Plane E on 
the figure. This rear mount at Plane B comprises an ingenious system of hard 

points built around the engine turbine frame contracting a flexible ring struc- 
ture that surrounds the engine rear casing. The entire system is sealed by 

graphite high-temperature machined ring segments fitted within a spring-loaded 

containment compartment. 

Also noteworthy of the Tyne installation is the fact that the engine 

essentially supplied no bleed for aircraft accessory services. Instead, a 

special gearbox has been added to the low-pressure engine spool to provide 

shaft horsepower transmitted remotely, through a drive shaft with self-align- 

ing joints, to an aircraft-mounted accessory gearbox. This latter gearbox 

typically provides pads for all the required aircraft services. 

The combining of systems onto a separate gearbox from the engine itself, 

was a precursor to the modular design approach now favored for the new turbo- 

propfan accessory systems. 

4.7.2 Geometric Selection Criteria 

For the turboprop high cruise speed installations, nacelle design work 

has been performed for NASA by a number of airframe companies starting with 
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F i g u r e  4 .7 .1 .  L o c k h e e d  E l e c t r a  I n s t a l l a t i o n  (Lower Offset Gearbox). 

F i g u r e  4.7-2.  T y p i c a l  Nacelle f o r  6000 ESHP X-R "Tyne'! 
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Figure 4 . 7 - 3 .  Model Configuration Used in A Wind Tunnel Program. 
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t h e  RECAT s t u d i e s  i n  t h e  middle 1970's. 

oped by Douglas as p a r t  of the  DC-9 reengining s tudy con t r ac t ,  and by Lockheed 

(Georgia) on the  Langley Contract for "Turboprop Cargo A i r c r a f t  Systems Study." 

NASA Ames, working with Douglas, has been performing wind-tponel s t u d i e s  of a 

powered prop-fan model on a r ep resen ta t ive  s u p e r c r i t i c a l  wing sec t ion .  

4.7-3 shows the  model conf igura t ion  being used i n  the  wind-tunnel program. 

This conf igura t ion  of n a c e l l e  shape and l o c a t i o n  w a s  considered t o  be a s t rong  

contender f o r  the  high c r u i s e  speed / supe rc r i t i ca l  wing combination, and drag  

t e s t  d a t a  toge ther  with p r o f i l e  pressure d a t a  is  now becoming ava i l ab le  from 

Ames as a r e s u l t  of t h e  tests. Consequently f o r  the  APET Study the  f i r s t  

n a c e l l e  conf igura t ion  t h a t  was proposed i s  very similar t o  the  model configu- 

r a t i o n .  This  i s  shown i n  Figure 4.7-4. 

More recent  des igns  have been devel- 

Figure 

Before embarking on a descr ip t ion  of t h i s  nace l l e  i t  is considered appro- 

p r i a t e  t o  review the  geometric data t h a t  has  been used t o  s e l e c t  n a c e l l e  loca- 

t i o n s  on the  wing. 

4.7.2.1 Axial Locations 

Ear ly  s t u d i e s  used a Hamilton-Standard recommendation f o r  the  axial loca- 

t i o n  of  t h e  plane of t he  propfan (p i tch  change a x i s ) .  

t h e  loca t ion ,  r e l a t i v e  t o  the  wing chord, should observe as a minimum a dimen- 

s i o n  of  a t  least one propfan diameter from t h e  re ference  plane t o  the  q u a r t e r  

chord s t a t i o n  of t he  wing along the plan view c e n t e r l i n e  of the  nace l l e .  

This recommended t h a t  

Locating the  propfan i n  t h i s  manner appears t o  s a t i s f y  most concerns on 

moderately swept wings but places  the inboard propfan t i p  f a i r l y  c lose  t o  more 

sharp ly  swept wings ( a s  i s  typ ica l  f o r  t he  Mach Cruise  0.80 a i rp l ane ) .  It was 

the re fo re  decided f o r  t h i s  study t o  invoke an add i t iona l  c o n s t r a i n t  t h a t  had 

been used i n  some e a r l i e r  propfan powered a i r p l a n e  designs.  This a d d i t i o n a l  

c o n s t r a i n t  r e s t r i c t s  the  c learance  between t h e  inboard propfan t i p  and t h e  

chord of  t he  l o c a l  wing a t  t h a t  b u t t  l i n e  loca t ion .  

t w o  c o n s t r a i n t s  has  the re fo re  been used f o r  t h e  s tudy a i rp l anes .  This axial 

r e l a t i o n s h i p  i s  depicted i n  F igure  4.7-5 f o r  t he  wing geometry of t he  MCR = 

0.80 Airplane.  

A combination of t hese  
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Figure 4.7-4.  M E T  Baseline Nacelle-Principal Features and Assemblies. 
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F i g u r e  4.7-5. APET Nace l l e  Axial Spac ing  Criteria.  
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4.7.2.2 Spanwise Loca t ions  

Nace l le  l a t e r a l  p o s i t i o n  w a s  n o t  e s t a b l i s h e d  us ing  r i g o r o u s  ground r u l e s .  

For t h e  long duct mixed flow tu rbofan  engines  an average of spanwise l o c a t i o n  

by a i r f r ame  con t r ac to r s  when they conducted E3 powered a i r p l a n e  s t u d i e s  f o r  

NASA, w a s  used. 

nozz le  be ing  s e t  a t  one q u a r t e r  chord and reasonable  va lues  f o r  t h e  channel  

h e i g h t  between t h e  t o p  of t h e  n a c e l l e  and t h e  unders ide  of t h e  wing. 

l a t e r a l  spacing va lue  used w a s  0 .30 o f  t h e  semi-span. Th i s  l o c a t i o n  gave Val- 

ues  of  131 sq.  f t .  and 133 sq .  f t .  f o r  t h e  v e r t i c a l  t a i l  areas of  t h e  tu rbofan  

MCR 0.80 and MCR 0.70 a i r p l a n e s  r e s p e c t i v e l y .  

Axial spac ing  w a s  h e l d  t o  a va lue  wi th  t h e  common exhaust  

The 

Lateral  spacing o f  t h e  turbopropfan n a c e l l e s  w a s  d i c t a t e d  by cons idera-  

t i o n s  of propfan t i p  spacing d i s t a n c e  from t h e  fuse l age  s k i n ,  engine  o u t  

e f f e c t s  on t h e  v e r t i c a l  t a i l  s i z e  ( t h e  t h r u s t  moments are l a r g e r  f o r  t h e  prop- 

f a n  than  t h e  turbofan) ,  and propuls ion  weight  e f f e c t s  f o r  wing bending r e l i e f .  

For t h e  f i r s t  cons ide ra t ion ,  advice  was sought from t h e  resu l t s  of  prev i -  

ous s t u d i e s  and conve r sa t ions  wi th  a i r f r ame  des ign  companies. I n  t h e  ear ly  

days of  propfan a c o u s t i c  i n v e s t i g a t i o n s  a l a t e ra l  spacing of 0.80 propfan 

d iameter  f o r  f u s e l a g e l t i p  c l ea rance  w a s  suggested.  Later a i r f r ame  s t u d i e s  

have i n d i c a t e d  t h a t  t h e  o v e r a l l  t r a d e  f o r  a d d i t i o n a l  a c o u s t i c  material  i n  t h e  

fuse l age  can support  a va lue  of 0.50 o f  propfan d iameter ,  and t h i s  i s  t h e  va lue  

used f o r  t h e  APET turbopropfan powered a i r p l a n e s ,  i r r e s p e c t i v e  of  c r u i s e  Mach 

number. This  value provides  a c e n t e r l i n e  of fuse l age  t o  c e n t e r l i n e  of propul- 

s i o n  t h r u s t  of 19.0 f e e t  f o r  t h e  turbopropfan ( t h i s  may be compared wi th  16-2/3 

f e e t  f o r  t h e  turbofan) .  The e f f e c t  of engine  o u t  on v e r t i c a l  t a i l  s i z i n g  d i c -  

t a t e d  an increase  f o r  t h e  turboprop a i r p l a n e s  of approximately 16 percent  over  

t h e  va lues  used f o r  t h e  tu rbofan  a i r p l a n e s .  

4.7.3 Nacelle Desc r ip t ions  

4.7.3.1 Under-The-Wing Layouts 

As can be seen i n  t h e  views shown on Figure  4.7-4 an  o f f s e t  gearbox 

arrangement i s  used where t h e  p r o p e l l e r  t h r u s t  c e n t e r l i n e  i s  above t h e  c o r e  

engine  c e n t e r l i n e .  It can a l s o  be seen  t h a t  t h e  phys ica l  s e p a r a t i o n  d i s t a n c e  
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of  t h e  core  engine 

c u r r e n t  turboprops 

behind t h e  p r o p e l l e r  gearbox i s  l a r g e r  than  seen  on t h e  

using o f f  se t  gearboxes. 

The reason  f o r  t h i s  i s  simply the f a l l - o u t  o f  requirements  t h a t  now e x i s t  

f o r  the i n l e t  des ign  parameters  of  an i n s t a l l a t i o n  designed f o r  c r u i s e  a t  Mach 

0.8 a s  compared wi th  t h e  earlier,  slower c r u i s e  speed a i r c r a f t  which t y p i c a l l y  

ope ra t ed  i n  t h e  Mach 0.5 t o  0.6 band. 

This l a r g e  s e p a r a t i o n  d i s t a n c e  a l s o  h e l p s  t h e  i n s t a l l a t i o n  i n  o t h e r  ways. 

C l e a r l y ,  t h e r e  i s  widespread indus t ry  agreement t h a t ,  i f  p o s s i b l e ,  t h e  a i r -  

frame s y s t e m  a c c e s s o r i e s  t h a t  are requi red  t o  be mechanical ly  powered should 

n o t  be d r iven  on pads provided by the p r o p e l l e r  gearbox. The h igh  torque pro- 

p e l l e r  gearbox i s  a cha l l eng ing  enough t a s k  on i t s  own, t o  meet r e l i a b l e  l i f e  

and unscheduled removal ra te  guarantees ,  wi thout  being penal ized  by a number 

of  a d d i t i o n a l  g e a r s e t s ,  bea r ings ,  lube o i l  supply and scavenge systems, over- 

hang moments of t h e  a c c e s s o r i e s ,  e t c .  Therefore ,  a remote l o c a t i o n ,  s h a f t  

d r i v e n  accessory gearbox ded ica t ed  s o l e l y  t o  t h e  support  of  a i r c r a f t  s e r v i c e s ,  

p rovides  one accep tab le  des ign  so lu t ion .  Such a system i s  shown on t h e  r e f e r -  

enced f i g u r e .  Also, t h e  n a c e l l e  i n t e r n a l  volume i s  l a r g e  enough t o  house the  

p r o p e l l e r  c o n t r o l  u n i t  (on t h e  back of t h e  p r o p e l l e r  gearbox and c o a x i a l  wi th  

t h e  p r o p e l l e r  c e n t e r l i n e )  as w e l l  a s  the system o i l  t ank ,  h e a t  exchanger,  

d u c t s ,  and c o n t r o l s .  Engine dedicated a c c e s s o r i e s  shown are mounted on t h e  

unders ide  of  t h e  tu rbosha f t  gas  genera tor  and would be e a s i l y  maintained o r  

removed through a lower, hinged,  access  door.  

This i n s t a l l a t i o n  ske tch  a l s o  i n d i c a t e s  t h e  s t r u c t u r a l  concept f o r  engine  

and p r o p e l l e r  gearbox in te rconnec t ion  and f o r  mounting t o  t h e  a i r f r ame  s t r u c -  

t u r e .  A s  has  been noted a l r eady ,  turboprop i n s t a l l a t i o n s  tend t o  be dominated 

by s t r u c t u r a l  requirements ,  and t h i s  n a c e l l e  i n s t a l l a t i o n ,  as shown, i s  no 

except ion .  The s t r u c t u r a l  concept employs a s t r e s s e d  s k i n  n a c e l l e  enc losu re  

t h a t  could be i n t e g r a t e d  d i r e c t l y  with t h e  wing s t r u c t u r e .  The forward sec- 

t i o n  of  t h e  n a c e l l e  i s  a b a r r e l  which becomes cut-away f o r  t h e  wing penetra-  

t i o n  and f o r  t h e  cowl doors  below the t u r b o s h a f t  engine c e n t e r l i n e .  

Another p o s s i b i l i t y  i s  shown i n  F igure  4.7-6 where the  propfan gearbox. 

h a s  been s p l i t  i n t o  two p ieces .  The engine  d r i v e s  forward t o  a f i r s t  s t a g e  

r educ t ion  g e a r s e t  t h a t  p rovides  twin d r i v e s h a f t s ,  t h a t  a r e  p a r a l l e l  t o  each 
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o t h e r ,  which then connect t o  dua l  inputs  i n  t h e  p r o p e l l e r  gearbox. It would 

be a p p r o p r i a t e  a t  t h i s  po in t  i n  the d i scuss ion  of n a c e l l e  geometry t o  open 

up t h e  s u b j e c t  t o  embrace a l l  poss ib le  concepts .  

F igure  4.7-7 shows a family of n a c e l l e  i n s t a l l a t i o n s  - some of which are 

above wing l ayou t s  and some are below wing l ayou t s .  I n  a l l  t h e  ske tches  on 

t h e  f i g u r e  t h e r e  are cons t an t s .  

A l l  wing chords are i d e n t i c a l  (but t h e  wings are no t  n e c e s s a r i l y  a t  t he  

same h e i g h t  above t h e  ground).  A l l  the  propfans are i d e n t i c a l  i n  d iameter  and 

t h e  s h a f t  engines  and gearboxes a r e  t o  an equal  s c a l e  f o r  t r a n s m i t t i n g  12,500 

SHP a t  a propfan RPM of  1155 (800 f t f s e c  t i p  speed) .  Also,  t h e  t i p  c l ea rance  

of t h e  propfans above t h e  ground i s  a l s o  a cons t an t  30 inches  i n  each case .  

An a d d i t i o n a l  cons t an t  is  t h a t  a l l  t h e  n a c e l l e s  apply an i d e n t i c a l  r / R  v a l u e  

of  0.30 t o  t h e i r  maximum r a d i u s  r e l a t i v e  t o  t h e  propfan r a d i u s .  

Ea r ly  i n  t h e  s tudy  i t  w a s  found t h a t  f o r  t h e  advanced gearboxes and 

eng ines ,  v a l u e s  of  r / R  h ighe r  than  0.30 would unduly pena l i ze  n a c e l l e  weight 

and performance. 

loading  contained i n  an ea r l i e r  NASA s tudy .  

p e l l e r  t h r u s t  l o s s  (from i d e a l  va lues)  would be about  one h a l f  percent  f o r  

c r u i s e  a t  M = 0.8 reducing  l i n e a r l y  t o  ze ro  a t  a c r u i s e  va lue  of 0.75 by us ing  

0.30 r / R  (or d/D as  shown i n  t h e  f i g u r e )  r a t h e r  than t h e  0.35 recommended. 

Th i s  t h r u s t  l o s s  w a s  cons idered  t o  be an accep tab le  t r a d e  f a c t o r ,  i n  t h a t  

t h e  MCR 0.80 a i r p l a n e  spends very l i t t l e  p ropor t ion  of i t s  f l i g h t  t i m e  a t  MCR 

on the  300 N . M i  ranking mission.  

F igure  4.7-8 shows t h e  recommended va lue  ve r sus  propfan d i s c  

I n q u i r i e s  provided t h a t  t h e  pro- 

Also r e f e r r i n g  aga in  t o  F igure  4.7-7 t h e  ske tches  i d e n t i f i e d  as Number 1 

and Number 2 d e p i c t  n a c e l l e s  i nco rpora t ing  the  " s p l i t  gearbox" concept .  One 

of t h e  concerns being addressed by t h i s  concept i s  t h e  l o c a l  moment e f f e c t  

around the  wing-box s t r u c t u r e  occasioned by a forward suspended n a c e l l e  con- 

f i g u r a t i o n .  Another concern i s  t h e  desire  among some a i r f r ame  des igne r s  t o  

keep the "l ine-of-s ight"  of t h e  HP and LP t u r b i n e s  away from t h e  p lane  of 

f u e l  conta ined  w i t h i n  t h e  wing i n t e g r a l  tanks.  The sp l i t -gea rbox  arrangement 

does provide a l l e v i a t i o n  of t hese  two concerns a t  t h e  expense of some i n s t a l -  

l a t i o n  weight and some i n c r e a s e  of  n a c e l l e  drag  due t o  a d d i t i o n a l  wet ted a rea .  
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F i g u r e  4.7-7 .  APET Study N a c e l l e s .  
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Figure 4.7-8. Hamilton S t a n d a r d  Propfan  and Nacelle 
Recommended R e l a t i o n s h i p s .  
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The two under-the-wing i n s t a l l a t i o n s  designed use o f f s e t  d r i v e  systems 

t o  t h e  propfan, i . e . ,  t h e  prop c e n t e r l i n e  of t h r u s t ,  i n  each c a s e ,  i s  above 

t h e  r o t a t i o n a l  c e n t e r l i n e  of t h e  turboshaf t  engines ,  and i n l e t  a i r  i s  suppl ied  

v i a  a s i n g l e  scoop loca ted  on the  underside o f  t h e  n a c e l l e .  Discuss ions  wi th  

NASA and wi th  a i r f r ame  des igne r s  ind ica ted  t h a t  an i n - l i n e  gearbox and engine 

arrangement loca t ed  i n  an above-the-wing layout  should a l s o  be s t u d i e d ,  and 

any problem areas r e l a t i v e  t o  t h e  under-the-wing arrangement should be i d e n t i -  

f i e d .  

4.7.3.2 Over-The-Wing Layouts 

An i n - l i n e  gearbox w a s  designed ( t h i s  w a s  p rev ious ly  shown on Figure  

4.6-13) and has  been i n t e g r a t e d  wi th  APET Engine Number 2 (b ) .  

i n s t a l l a t i o n  conf igu ra t ion  i s  shown on F igure  4.7-9. Noteworthy f e a t u r e s  t h a t  

are d i f f e r e n t  i n  t h i s  i n s t a l l a t i o n  compared wi th  the  under-the-wing v a r i e t y  

are : 

The f u l l  

0 Bifurca ted  i n l e t  € o r  engine a i r  supply 

0 Gearbox supported by a tubu la r  t r u s s  s t r u c t u r e  

0 Gearbox h e a t  exchanger loca ted  i n  an ex tens ion  of  t h e  inboard wing 
leading  edge. 

0 A i r c r a f t  a c c e s s o r i e s  dr iven from t h e  p r o p e l l e r  gearbox v i a  an angled 
d r i v e  

0 P r i n c i p a l  axial  l eng th  of  the  n a c e l l e  is  based on a s u b s t a n t i a l l y  
c i r c u l a r  c ros s - sec t ion .  

Also i t  may be seen  t h a t  t h e  cu r ren t  Hamilton-Standard propfan h y d r a u l i c  

p i t c h  change mechanism h a s  been r e t a ined .  

This des ign  layout  au tomat ica l ly  provides  an improved propfan-to-ground 

c l e a r a n c e  geometry, i . e . ,  t h e  wing is less h igh  above t h e  ground and t h e r e f o r e  

t h e  landing  gea r  length  can be  reduced. S t r u c t u r a l l y  and aerodynamical ly  i t  

should be a t  least  as good a s  t h e  best  under-the-wing l ayou t  and t h e  twin- 

i n l e t  arrangement should pose only minor des ign  problems. 
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The major problem i n  the  layout i s  the  less des i r ab le  means of t r a n s f e r  

of hydraul ic  power from the  propfan c o n t r o l l e r  t o  the  hydraul ic  p i t ch  change 

mechanism. 

might be very des i r ab le  f o r  t h i s  i n s t a l l a t i o n .  

A change from a hydraul ic  t o  an a l l - e l e c t r i c  p rope l l e r  con t ro l  

4.7.3.3 Moment-Index Analyses 

The r e l a t ionsh ips  of t he  ava i lab le  wing-box a rea  t o  the  suspended weight 

of both the  turbofan and turboprop propulsion systems w a s  examined i n  t h i s  

s tudy.  Some e a r l y  concern was expressed, as a r e s u l t  of t h e  geometry ground 

r u l e s  f o r  both a x i a l  and l a t e r a l  spacing of the  propulsion systems, t h a t  

excessive moments might be r e s u l t i n g  from these  geometries. 

It w a s  c e r t a i n l y  a f a c t  t h a t  the wing se l ec t ed  with an AR of e leven pro- 

vided only a chord length of approximately 120 inches,  a t  the  l a t e r a l  center-  

l ine  of t h e  turboprop system, and using spar loca t ions  of 15 and 65 percent  

of l o c a l  chord f o r  t he  f r o n t  and rear spars re spec t ive ly ,  t he  wing box chord 

length  ava i l ab le  w a s  about 60 inches.  

c a l  s u p e r c r i t i c a l  a i r f o i l  s ec t ion  enabled the  c a l c u l a t i o n  of the  area bounded 

by the  wing spars and the  upper and lower wing sur faces .  

g r a v i t y  loca t ion  of t h e  propuls ion sys t em i s  now i d e n t i f i e d  and geometr ical ly  

r e l a t e d  t o  the  cent ro id  of t he  wing-box area ,  i t  is poss ib le  t o  de f ine  what 

might be c a l l e d  a Powerplant Moment Index. This index i s  i l l u s t r a t e d  i n  

Figure 4.7-10and has been used i n  the d a t a  shown i n  Figure 4.7-11, t o  compare 

t h e  APET systems with some examples of "real" turboprop and turbofan a i r c r a f t .  

Using thickness/chord r a t i o s  of a typi-  

I f  the  cen te r  of 

The conclusion t h a t  may be drawn i s  tha t  the  APET designs do not  apply exces- 

s i v e  moments t o  the  wing, and t h a t  t h e  " s p l i t  gearbox" conf igura t ion  would 

provide a s u b s t a n t i a l  moment r e l i e f  which might be used t o  advantage i n  reduc- 

ing  o v e r a l l  wing weight. 

4.7.4 I n l e t  Aero S tudies  (Single Scoop and Double Scoop) 

The work described i n  t h i s  sec t ion  w a s  based on: r e l a t e d  experience 

accumulated during the  General E l e c t r i c  Company's design and development of 

s e v e r a l  commercial turbofan nace l l e  i n s t a l l a t i o n s  and p a r t i c i p a t i o n  i n  o the r  

j o i n t  programs with a i r f ramers  and government agencies;  a v a i l a b l e  l i t e r a t u r e  



b . 4 C  4 Area Between Spars 
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1 Moment Index = 

(Area Between Spars) 

W = Suspended Weight of the Propulsion System, pounds 

= Distance of the Propulsion System Center of Gravity from 
the 40% Wing Chord Station 

C = Wing Chord a t  Propulsion System Centerline 

Figure 4.7-10. APET Powerplant Moment Index Definition. 

Poworplaiil Typo 

Turboprop 

1 
Typical Values - APET vs. Current Aircraft 

Aircrafl Type Approx. Moment Index 
(in-lblin') 

Electra (outboard) 286 
Belfast (outboard) 372 
SAAB-Fairchild SF-340 123 
DC-9 with propfan 772 

747 497 
DC10.30 537 
757 683 
A31 0 666 
737-300 590 
KC-135 (CFMS) 515 

(APET - Turbofan 4151 

Figure 4.7-11. APET Nacelles Powerplant Moment Index. I 



per t a in ing  t o  p rope l l e r  and propfan i n s t a l l a t i o n s ;  d i scuss ions  with Lockheed- 

Georgia (GELAC) designers;  access  t o  some d e t a i l s  of the  design work f o r  the  

NASA-Lewis Propel le r  Test Rig (PTR); and s e l e c t i v e  u s e  of in-house a n a l y t i c a l  

techniques.  

The work scope i s  out l ined  i n  Figure 4.7-12, which was prepared a t  the  

o u t s e t  t o  i l l u s t r a t e  the  var ious  t a s k s  and in t e rac t ions  involved as w e l l  as 

t h e  broad approaches i n i t i a l l y  planned f o r  t h e i r  completion. The following 

d iscuss ion  descr ibes  what w a s  ac tua l ly  done, r e l a t i v e  t o  the  flow cha r t  format 

of the  f igure .  A s  ind ica ted ,  two types of i n l e t  systems were designed; a s in-  

g l e  scoop, with an o f f s e t  gearbox; a b i fu rca t ed  scoop having an in - l ine  gear- 

box and over-the-wing engine arrangement. 

s equen t i a l ly  . 
Those two designs a r e  now descr ibed 

4.7.4.1 Cross Sect iona l  Shape of Single  Scoop I n l e t  

Figure 4.7-13 i l l u s t r a t e s  t he  end View of the  t h r o a t ,  h igh l igh t  and maxi- 

mum r a d i a l  envelope planes.  It a l s o  r e f l e c t s  the  design of  t he  i n t e r n a l  l i p ,  

forebody, boundary l a y e r  d i v e r t e r ,  and th roa t  area discussed below. Noteworthy 

f e a t u r e s  embodied i n  the  design include: 

0 I n l e t  c i rcumferent ia l  extent  i s  wi th in  the  maximum diameter of the  
propfan body enclosing the  gearbox, i n  order  t o  f a c i l i t a t e  in tegra-  
t i o n  of the  engine i n l e t / n a c e l l e  i n t o  t h a t  body without increas ing  
i t s  la teral  envelope. 

0 Boundary l aye r  d ive r s ion  around the  engine i n l e t  i s  f a c i l i t a t e d  by 
arranging the  inner  cowl flowpath so t h a t  t he  d i v e r t e r  channel he ight  
increases  i n  the  l a t e r a l  d i r e c t i o n  from i t s  value a t  the v e r t i c a l  
cen te r l ine .  

0 The s i d e  "corner" r ad ius  i s  based on a GELAC design. That region i s  
important,  s i n c e  its leading edge must t o l e r a t e  i nc iden t  propfan 
s w i r l  without flow separat ion thus  reducing d i s t o r t i o n  and engine 
o p e r a b i l i t y  problems. 

4.7.4.2 Duct Design Analysis 

Because of i ts  importance t o  the remainder of the  i n s t a l l a t i o n ,  t h i s  com- 

ponent 's  bend proport ions and length were' e s t ab l i shed  by a combination of com- 

puter  flow ana lys i s  and empir ical  es t imates  of p re s su re  loss. 
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I n i t i a l l y ,  the  Streamtube Curvature (STC) computer code (Reference 12) 

w a s  used t o  e s t a b l i s h  meridional flowpaths producing a t tached  flow i n  a duct 

whose v e r t i c a l  o f f s e t  and length were prescr ibed by a prel iminary engine 

i n s t a l l a t i o n  layout.  An important ind ica tor  emerged from t h e  flow separa t ion  

parameter,  Fsep, commonly used by General E l e c t r i c .  

shown i n  Figure 4.7-14 f o r  a corrected flow r a t e  corresponding t o  about 83% of 

m a x i m u m  power a t  M = 0.80/35K3. 

sca l e ,  i s  t h a t ,  f o r  such an i n l e t  o f f s e t  and length,  a t tached flow throughout 

t h e  duc t  is only predicted f o r  a r e l a t i v e l y  cons tan t  duct  flow area. Based 

on t h a t  r e s u l t ,  a constant  a r ea  duct w a s  s e l ec t ed ,  t o  provide some flow s t a -  

1 
I 
1 

The Fsep results are 

The s ign i f i cance  of t h i s  p l o t ,  per the  i n s e t  

I 
b i l i t y  margin. 

Subsequently, a new, sho r t e r  gearbox was designed. Also, empir ical  

p ressure  loss estimates based on the a n a l y s i s  and d a t a  of Reference 27 were 

made t h a t  ind ica ted  h igher  pressure  recovery could be a t t a i n e d  with a longer 

duct  allowing l a r g e r  bend r a d i i .  
1~ 

Consequently, the duct was lengthened 10 
I 

1. * . -  

' inches from t h e  i n i t i a l  value on which the  flow a n a l y s i s  w a s  based. Recovery 
'. . estimates Pot the f i n a l  duct design a r e  shown i n  Figure 4.7-15 f o r  the  range of :. -+*=- .$ 

: - I  ' 
* . '.. divekter-height  considered. The 2 . 1  inch he ight  was u l t ima te ly  chosen, per  

t he  d iscuss ion  of Sect ion  4.7.4.6. 

E 4.7.4.3 I n t e r n a l  Lip Shape 

The i n t e r n a l  l i p  design was t a i l o r e d  around the  i n l e t  per iphery,  t o  place 

maximum th ickness  a t  t h e  s ides ,  which must  t o l e r a t e  t he  inc ident  s w i r l  from the  

prop-fan, and r e l a t i v e l y  l i t t l e  thickness  on the  inner  and o u t e r  flowpaths, on 

which no s i g n i f i c a n t  flow incidence is presumed t o  ac t .  @ET engine cycle  d a t a  

were used t o  cons t ruc t  the  Figure 4.7-16 p l o t  of hub region swirl vs. discharge 

Mach number, to  e s t a b l i s h  design requirements akin t o  those  employed f o r  tu r -  

bofan i n s t a l l a t i o n s .  Empirical information w a s  used t o  s e l e c t  the  r e q u i r e d  

s i d e  l i p  proport ions,  assuming t h a t  swi r l  and pitch-type incidence a re  numeri- 

c a l l y  equiva len t ,  s ince  no evidence regarding t h a t  r e l a t i o n s h i p  i s  i n  hand. 

With t h a t  assumption, as shown i n  Figure 4.7-16, i t  i s  projected t h a t  t he  

se l ec t ed  s i d e  l i p  design w i l l  t o l e r a t e  25' f low' incidence a t  a 0.31 onse t  Mach 

1 
8 
II 
8 
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number, which s a t i s f i e s  t h e  APET t akeof f  requirements  f o r  Mo - >0.20. 

f a c t i o n  of  t h e  h igher  s w i r l  l e v e l s  occur r ing  dur ing  t h e  Mo < 0.20 p o r t i o n  of 

t h e  takeoff  r o l l  depends on one o r  more o f  t h e  fo l lowing  f a c t o r s :  

S a t i s -  

0 The cycle  d a t a  employed f o r  s w i r l  r equi rements  r ep resen t  only a 
nominal prop-fan p i t c h  schedule ;  i t  may be p o s s i b l e  t o  r e schedu le  
p i t ch  during t h e  t akeof f  r o l l  t o  reduce s w i r l .  

0 A given amount of  s w i r l  may be less t ax ing  than  t h e  same numerical  
va lue  o f  convent iona l  p i tch- type  inc idence ,  i n  terms of  i t s  poten- 
t i a l  t o  cause flow s e p a r a t i o n  from a similar l i p  des ign .  Then t h e  
i n l e t  l i p  c a p a b i l i t y  would be g r e a t e r  than  t h e  p r o j e c t i o n  of  t h e  
f igure .  

0 The prop-fan flow a c c e l e r a t i o n  c o n t r a c t s  t h e  captured  s t reamtube ,  
r e l a t i v e  t o  a tu rbofan  i n s t a l l a t i o n  of  t h e  same i n l e t  area and f l i g h t  
Mach number. For t h e  APET design,which produces r e l a t i v e l y  low oper- 
a t i n g  mass-flow r a t i o ,  A,/AHL = 1.01 t o  1.14 du r ing  t h e  t akeof f  r o l l ,  
t h i s  e f f e c t  should s i g n i f i c a n t l y  ease t h e  problem, by reducing t h e  
flow tu rn ing  requirement around t h e  i n l e t  l i p .  

0 The long i n l e t  duc t  may s i g n i f i c a n t l y  a l leviate  any f low d i s t o r t i o n  
caused by l i p  s e p a r a t i o n  b e f o r e  it reaches  the compressor. 

On balance,  t h e  l i p  des ign  w a s  s e l e c t e d  i n  t h e  b e l i e f  t h a t  engine  opera- 

b i l i t y  dur ing  the takeoff  r o l l  i s  = a b a r r i e r  problem t h a t  n e c e s s i t a t e s  t h e  

drag and weight  pena l ty  t h a t  would r e s u l t  from a t h i c k e r  i n l e t  l i p .  

4.7.4.4 Prop-Fan/Inlet  Spacing 

This  parameter w a s  determined d i r e c t l y  by t h e  gearbox and i n l e t  duc t  

des igns .  The r e s u l t i n g  placement i s  f a r t h e r  from t h e  prop-fan t r a i l i n g  edge 

than  e i t h e r  t he  GELAC i n l e t  des ign  o r  t h e  Hamilton-Standard forward boundary 

layer  r ake  p o s i t i o n  i n  t h e  t e s t  summarized i n  Reference 28.  

s i d e r e d  acceptab le  and of  minimal performance s i g n i f i c a n c e ,  s i n c e  no apprec ia -  

This  was con- 

b l e  a d d i t i o n a l  boundary l aye r  growth i s  expected over  t h e  incremental  l eng th ,  

due t o  t h e  loca l  flow a c c e l e r a t i o n  a n t i c i p a t e d  i n  t h a t  r eg ion ,  per  t h e  above 

r e f  e rence  . 

4.7.4.5 Forebody Shape 

The forebody des ign  requirements  c o n s i s t  of t h e  need t o  ope ra t e  without  

d r a g  r i se  a t  f l i g h t  Mach numbers up t o  0.80 and power s e t t i n g s  down t o  80% of  

maximum. The design w a s  t a i l o r e d  around the  per iphery .  Conventional cowl 
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des ign  d a t a  were used t o  provide shapes adequate t o  avoid e i t h e r  s p i l l a g e  or 

wave drag  on the  s i d e  and o u t e r  flowpaths exposed t o  t h e  high v e l o c i t y  d i s -  

charge flow from t h e  prop-fan. 

f lowpath forming pa r t  of t h e  d i v e r t e r  region,  under the  premise t h a t  t h e  

r e l a t i v e l y  low v e l o c i t y  i n  t h a t  region does not r equ i r e  much pro jec ted  a r e a  

f o r  drag  rise avoidance. 

t h e  inner ,  o u t e r ,  and s i d e  regions a re  shown i n  Figure 4.7-17. 

A r e l a t i v e l y  t h i n  cowl w a s  placed on the  inne r  

The i n t e r n a l  l i p  and forebody flowpaths s e l e c t e d  for 

4.7.4.6 Boundarv Laver Diverter  

An estimate w a s  made of t he  ne t  "thrust-minus-drag" e f f e c t  a t t r i b u t a b l e  

t o  var ious  d i v e r t e r  he igh t s ,  i n  order  t o  s e l e c t  t h a t  design.  fea ture .  

following performance e f f e c t s  were evaluated: 

The 

0 Varia t ion  of duc t  pressure  recovery wi th  change i n  t h e  duct  v e r t i -  
cal o f f s q t ,  v i a  t h e  pressure l o s s  methodology d iscussed  i n  Sec t ion  
4.7.4.2.  

0 Variation in  average total  p re s su re  of the flow captured from vari- 
ous spanwise reg ions  of the prop-fan discharge.  This w a s  evaluated 
by i n t e g r a t i n g  a model of the prop-fan's d i scharge  t o t a l  p re s su re  
p r o f i l e  that was synthesized i n  t u r n  from d a t a  of Reference 28 
and APET c y c l e  da t a .  

0 Drag on the incremental por t ion  of t h e  n a c e l l e  area a t t r i b u t a b l e  t o  
t h e  d i v e r t e r ' s  presence. 

The f r i c t i o n  drag component was  ca l cu la t ed  convent ional ly  whi le  the  

pressure  drag c a l c u l a t i o n  w a s  parametricized, s i n c e  no app l i cab le  p re s su re  

drag d a t a  f o r  such an arrangement a re  known t o  exist .  

The o v e r a l l  r e s u l t  of those ca l cu la t ions  i s  shown i n  Figure 4.7-18 i n  

tenus of  t h e  r e l a t i v e  d i v e r t e r  n e t  thrust-minus-drag e f f e c t  vs .  d i v e r t e r  

he igh t .  

t he  ind ica ted  nominal values  contained i n  the  APET cyc le  deck. The resu l t s  

shown i n  t h i s  f i g u r e  do not  i n d i c a t e  an optimum d i v e r t e r  he igh t ,  due t o  the  

unce r t a in ty  i n  pressure  drag, which is p o t e n t i a l l y  the  dominant e f f e c t .  Af te r  

some cons idera t ion ,  a 2.1 inch d i v e r t e r  he igh t  w a s  s e l ec t ed ,  which r ep resen t s  

about 70% o f  t h e  main d e f i c i t  i n  discharge pressure  and Lies between the  optima 

ind ica t ed  by pressure  drag c o e f f i c i e n t s  of O+ and 0.25. 

based on the  judgment t h a t  t h e  r e l a t i v e l y  gradual  streamwise blend of the  

d i v e r t e r  channel i n t o  the  bas i c  cowl su r face  of t h i s  design should f a c i l i t a t e  

The datum for t he  thrus tminus-drag  o rd ina te  was chosen t o  represent  

That s e l e c t i o n  was 

249 



E? 

+2 

0 -  

-2 

-4 

. 

Y 
b l 4  

2 .005 - .010 
‘DPressure 
Applied to Total Diverter 
Projected Area and Average 
Prop-Fan Discharge q 

Bases: -o-o 0 .80/35K/80X Power - 

0 (F-D) is relative to Nominal Cycle Deck Conditions: 
(P/P)prop=1.036. II 1 . 9 8 5 ,  No Diverter Drag. 

‘Duct 
0 (F-D) Includes Effects of Diverter on - Duct Offset - Average Pressure of Flow Captured from 

- Additional Nacelle Surface Area 

- 
Inner Cowl Thickness 
(Zero Effective 
Diversion) Design Selection Prop-Fan Discharge 

e. 

rn 
Y e U 

.A 

a 

t: 

x 4 

Schematic of 

0 

L 

4 

2 

0 

-2 

4 

2 

0 

-2 

0 4 8 12 16 

Axial Length From HL’Llncheo 

Figure  4.7-17. APET S i n g l e  Scoop I n l e t  L ip  and Cowl Contours.  

F igu re  4.7-18. APET S i n g l e  Scoop I n l e t  Diverter Height  Study. 

2 50 



B 
I 
I 
D 
1 -  
8 
1 
D 
t 
I 
I 
I 
B 
I 
1 
I 
1 
1 

r e a l i z a t i o n  of pressure  drag  approaching t h e  va lue  of a well-designed turbofan 

n a c e l l e .  

d rag  c o e f f i c i e n t  i s  between O+ and 0.25 and nea re r  O+. 
I n  terms of  t h e  Figure 4.7-18 po r t r aya l ,  t he  "best-guess" pressure  

An a d d i t i o n a l  des ign  f e a t u r e  r e l a t e d  t o  the d i v e r t e r  i s  t h e  provis ion  

t h e r e  f o r  an a i r  in t ake  t o  v e n t i l a t e  t h e  entire nace l l e  cavi ty .  

w a s  s tud ied  for f e a s i b i l i t y ,  including e s t ima t ing  the  t o t a l  p ressure  loss of 

several combinations of in take  area and d i f f u s e r  arrangement. Resul t s  showed 

That concept 

t h a t  the a r e a  needed t o  provide the required s i x  a i r  changes per  minute i s  

eas i ly  ava i l ab le  i n  the  d i v e r t e r  as designed but  t h a t  some means, such a s  an 

e x i t  f l a p  or e j e c t o r ,  of  lowering the c a v i t y  exhaust pressure  below ambient 

are needed f o r  f l i g h t  Mach numbers below about 0.4 t o  a s su re  p o s i t i v e  flow 

through t h e  system. 

4.7.4.7 Throat Area 

P e r  the d i scu r s ion  of t h e  duc t  design i n  4.7.4.2, a cons tan t  area duct  

was selected to provide a t tached  flow i n  the  duc t  and thereby preclude 

engine o p e r a b i l i t y  problems. 

4.7.4.8 Drive Shaf t  Fa i r ing  

No sepa ra t e  s tudy of t he  d r i v e  s h a f t  f a i r i n g  was made. P e r  t h e  experi-  

mental i nves t iga t ion  summarized i n  Reference 2 9 ,  a recovery improvement of 

0.15 t o  0.25% would be a n t i c i p a t e d  from the  inc lus ion  of  a f a i r i n g  designed t o  

provide a smooth longi tudina l  a r e a  d i s t r i b u t i o n ,  as opposed to  a s i m p l e  abrupt  

cy1 inder-cone arrangement approaching t h e  compressor. 

4.7.5 Bifurcated Scoop I n l e t  

A less ex tens ive  s tudy e f f o r t  was appl ied  t o  the  b i fu rca t ed  scoop i n l e t  

design than t o  the  s i n g l e  scoop i n l e t .  

d e f i n i t i o n  i s  discussed i n  the  same format, bu t  less ex tens ive ly ,  with maximum 

a t t e n t i o n  t o  those items d i f f e r i n g  from t h e  s i n g l e  scoop design. 

Accordingly, t h e  b i fu rca t ed  i n l e t ' s  

4.7.5.1 Cross-Sectional Shape 

In genera l ,  a similar approach t o  t h a t  of the  s i n g l e  scoop i n l e t  was fol- 

lowed, with two except ions.  The c e n t e r l i n e  of each i n l e t  face ,  i n  t h e  f r o n t  
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view, w a s  located 30" below the  h o r i z o n t a l  c e n t e r l i n e ,  t o  avoid t h e  l a r g e  

b o a t t a i l  angles  found t o  occur on t h e  top  n a c e l l e  with a top/bottom i n l e t  

arrangement. Also a f t e r  some i t e r a t i o n ,  t he  prop-fan c e n t e r l i n e  w a s  s e l e c t e d  

as the  generator  of t he  o u t e r  f lowpaths,  r a t h e r  than a n e a r e r  po in t  as on the  

s i n g l e  scoop i n l e t .  

more l i k e  t h e  GELAC des igns  and also t o  reduce t h e  cowl 's  r a d i a l  e x t e n t .  

r e s u l t i n g  design 's  end view i s  shown i n  F igure  4.7-19. 

This w a s  done t o  make t h e  i n l e t  c i r cumfe ren t i a l  e x t e n t  

The 

4.7.5.2 Duct Design 

The duc t  bend proport ions,  l ength ,  and placement were e s t a b l i s h e d  by 

(1) applying the bend radius-to-duct he igh t  ra t ios  of  t he  APET s i n g l e  scoop 

des ign  and ( 2 )  l oca t ing  t h e  t h r o a t  plane about as f a r  forward as poss ib l e  

without  placing t h e  inne r  duct flowpath closer than 0.5 inch  t o  the  l i m i t i n g  

corner  of t h e  gearbox. The r e s u l t i n g  duct  l eng th  produces chordal  angles  

in te rmedia te  between those of t h e  APET s i n g l e  scoop ( l a r g e s t )  and GELAC PTR 

twin ( sma l l e s t )  i n l e t s .  

Tota l  pressure l o s s  estimates were made, using empir ica l  methods f o r  both 

f r i c t i o n  and turning components. The o v e r a l l  duct  recovery resu l t s  are shown 

i n  Figure 4.7-20. The b i fu rca t ed  i n l e t  has  less turn ing  loss and more f r i c -  

t i o n  loss than the  s i n g l e  i n l e t ,  n e t t i n g  t o  s l i g h t l y  less o v e r a l l  l o s s .  

4.7.5.3 I n t e r n a l  Lip Shape 

This  was handled ak in  t o  t h e  s i n g l e  duct  procedure, with an obvious 

allowance f o r  t h e  smaller absolu te  s i z e  of each of t he  b i fu rca t ed  duc ts .  

4.7 .5 .4  Prop-Fan/Inlet Spacing 

' This  f ea tu re  was again determined by the  duct design,  i .e. t he  need t o  

avoid duct-gearbox i n t e r f e r e n c e  and the  d e s i r e  f o r  minimum poss ib l e  prop- 

engine proximity. 

t h e  b i f u r c a t e d  than t h e  s i n g l e  i n l e t .  

The r e s u l t i n g  proximity va lue  i s  about 12% l a r g e r  f o r  

4.7.5.5 Forebody Shape 

The same approach as f o r  t h e  i n t e r n a l  l i p ,  4.7.5.3, w a s  followed. 
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Figure 4.7-19. APET Bifurcated Scoop Inlet,  

Bases: 
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0 T o t a l  -267.5 in 

Div. E*- 2.1" 

0.99 - 

0.98 - 
Representative 

Flaw W d  
Points 

W r 3 . o r  
0.97 - 

0.96 I I I I 
30 40 50 60 70 80 0 10 20 

Corrected Plov - K m l b / . s e c .  

Figure 4.7-20.  APET Inlet Duct Recovery Schedule Bifurcated Scoop. 
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4.7.5.6 Boundary Layer Dive r t e r  

The same 2.1 inch height  as fo r  the  s i n g l e  scoop i n l e t  w a s  used,  a s  no 

sepa ra t e  assessment of t h i s  f ea tu re  on t h e  b i fu rca t ed  i n l e t  w a s  made. 

4.7.5.7 Throat Area 

The same to t a l  t h r o a t  a r e a  as the  s i n g l e  i n l e t  w a s  s e l e c t e d .  That choice 

was prompted by resu l t s  of t h e  s i n g l e  i n l e t  duct  design ana lys i s  descr ibed i n  

4.7.4.2. 

4.7.6 

For perspec t ive ,  Table 4.7-1 pr0vide.s a t abu la t ion  of  s eve ra l  design 

Summary of Selected I n l e t  Design Parameters 

parameters f o r  each of the  APET i n l e t s ,  with comparative GELAC values  where 

a v a i l a b l e .  Two genera l  comments regarding t h i s  summary a r e  appropr ia te .  The 

APET conf igura t ions  represent  " leve l  one" n a c e l l e  designs based on advanced 

engine and gearbox concepts. Also, the  i n l e t  designs a r e  intended t o  be 

aggress ive ,  rather than conservat ive,  p a r t i c u l a r l y  i n  terms of duct length 

and l ip/cowl projected a rea ,  t o  t he  ex ten t  f e a s i b l e  without obvious compro- 

mises i n  performance and/or o p e r a b i l i t y .  The premise behind t h a t  approach is  

t h a t  high-performance systems w i l l  only be i d e n t i f i e d  by i n i t i a l l y  proposing 

aggress ive  designs f o r  subsequent development and improvement, a s  requi red .  

. 

4.7.7 Exhaust System Aero Design 

4.7.7.1 Nozzle Se lec t ion  C r i t e r i a  

The exhaust system f o r  turboprop engines opera tes  a t  low nozzle pressure  

r a t i o s  (1.5 or  below) and, t he re fo re ,  does not  have t o  dea l  with supersonic  

flow. The general  conf igura t ion  can thus be a simple conic  nozzle o r  a l t e r n a -  

t i v e l y  have an externa l  plug/centerbody. I n i t i a l  s t u d i e s  showed l i t t l e  d i f -  

fe rence  i n  performance f o r  e i t h e r  approach. Thus, f o r  the  APET design,  i t  was 

decided t o  s e l e c t  t h e  conic  nozzle approach which i s  the  more simple of t he  

two. For a more d e t a i l e d  design scope ( i . e . ,  f u l l  s c a l e  development program) 

t h i s  s e l e c t i o n  of conic  vs .  ex t e rna l  plug may be d i r e c t e d  by wind tunnel  tes t  
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Table 4.7-1. Comparative Summary of Selected Inlet Design Parameters. 

Single  SCOOD 
GE MET 

2.28 

0.303 

1.10, 1.346 Side 
2.0 

0.097 

GEUC Teat , PTX 
2.77 

0.226 

1.15, 1.20 Side - Q.0 

0.045 

r/n 

4 .o 

1.00, 1.25 

- 

Bifurcated Scoop 
GE APET 

1.58 

Q.49* 

1.10, 1.346 Side 

2.0 

0.109 

0.955, 0.815' 

-0.7 

1.00 

G E U C ,  PTB 

2 . 5  

Q.34 

1.15, 1.20 Side 

- u . 0  

*Lateral Offset from Mid-point of Throat to 1/2 Caprereor Tip Padiur 
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r e s u l t s  consider ing nace l le /nozz le  af terbody drag  and e x t e r n a l  flow suppres- 

s i o n  e f f e c t s  on nozzle  flow c o e f f i c i e n t s .  The fol lowing paragraphs desc r ibe  

t h e  ana lyses  which produced t h e  APET exhaust nozzle  and performance. 

4.7.7.2 Nozzle Design 

I n i t i a l l y ,  t h e  exhaust nozzle  w a s  designed on an i s o l a t e d  n a c e l l e  bas i s .  

It w a s  decided to keep t h e  nozzle  as s h o r t  as poss ib l e  t o  lower t h e  f r i c t i o n  

l o s s e s  (both i n t e r n a l  and e x t e r n a l )  as w e l l  as weight,  bu t  a t  the  same t i m e  

main ta in  reasonable e x t e r n a l  b o a t t a i l  angles  t h a t  reduce e x t e r n a l  pressure  

drag. 

which can be employed on i s o l a t e d  axisymmetric n a c e l l e s  without i ncu r r ing  

excess  afterbody drag. 

design.  

nozzle  flow area and a minimum r a d i a l  c learance  between the  e x t e r n a l  n a c e l l e  

and the  tu rb ine  rear frame a f t  f lange,  e s t a b l i s h e d  t h e  e x i t  plane of t he  noz- 

z l e .  

t u rb ine  frame rea r  f lange  dimensions t o  keep low va lues  f o r  t he  i n t e r n a l  duct  

p r e s s u r e  l o s s .  The r e s u l t i n g  flowpath i s  shown i n  Figure 4.7-21. 
pres su re  l o s s  ca lcu la ted  f o r  t h i s  flowpath from t h e  tu rb ine  frame t o  the  noz- 

z l e  e x i t  w a s  0.32  percent  APT a t  M.8/35K. 
w a s  es t imated from empir ical  d a t a  and i s  near ly  cons tan t  a t  0.9985. 

t h e  e x i t  flow c o e f f i c i e n t  was determined from conic  nozzle  d a t a  f o r  a 15 degree 

h a l f  angle.  

The flow c o e f f i c i e n t  i n  t h i s  f i g u r e  i s  der ived  from d a t a  with no e x t e r n a l  flow. 

Wind tunnel  tests of n a c e l l e s  i n s t a l l e d  on wings have shown t h a t  e x t e r n a l  flow 

can suppress  (lower) t h e  flow c o e f f i c i e n t  of an exhaust nozzle due t o  a change 

i n  the  s t a t i c  pressure near  t he  nozzle e x i t  plane.  

s u b s t a n t i a l ,  i s  m o s t  pronounced f o r  unchoked nozzle  condi t ions  and i s  configu- 

r a t i o n  dependent. Est imates  of t h i s  suppression e f f e c t  have been made from 

previous wind tunnel test  experience and a r e  shown i n  Figure 4.7-23. These 

curves were included i n  t h e  APET c y c l e  deck and w e r e  used f o r  t he  cyc le  i t e r -  

a t i o n  t o  a r r i v e  a t  the  physical  area which def ined  t h e  nozzle  e x i t  diameter 

i n  Figure 4.7-21. In  a d e t a i l e d  development program, these  curves would have 

Nozzle afterbody angles  of 15' are considered t o  be about t he  maximum 

Therefore ,  t h e  15' angle  was s e l e c t e d  f o r  t he  i n i t i a l  

The se l ec t ion  of t he  15' angle ,  combined with t h e  requi red  cyc le  

The i n t e r n a l  centerbody and flowpath were def ined  c o n s i s t e n t  with the  

The i n t e r n a l  

The nozzle  v e l o c i t y  c o e f f i c i e n t  

Likewise, 

The r e s u l t i n g  nozzle  c o e f f i c i e n t  curves  a r e  shown i n  Figure 4.7-22. 

This  e f f e c t ,  which can be 
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t o  be defined f r an  wind tunnel t e s t s  of t he  s p e c i f i c  n a c e l l e  and a i r c r a f t  

i n s t a l l a t i o n .  

4.7.7.3 Nozzle I n s t a l l a t i o n  Fac tors  

The flowpath defined i n  Figure 4.7-21 w a s  used as a s t a r t i n g  point t o  

d e f i n e  the  nace l l e  geometry on an i so l a t ed  b a s i s  as discussed i n  the  next sec- 

t i on .  

n a c e l l e  on the  wing revealed t h a t  the exhaust nozzle afterbody defined on an 

i s o l a t e d  nace l l e  b a s i s  could r e s u l t  i n  a poor i n s t a l l a t i o n  and high drag. 
f i n a l  exhaust nozzle conf igura t ion  i d e n t i f i e d  from the  i n s t a l l a t i o n  study had 

t o  be extended approximately 15 inches using a 10' b o a t t a i l  angle t o  make the 

t o t a l  i n s t a l l a t i o n  and nace l l e  closeout acceptable.  

i s  shown i n  Figure 4.7-24, and the corresponding e x i t  c o e f f i c i e n t s  a r e  shown i n  

Figure 4.7-25; only t h e  flow c o e f f i c i e n t  changes due t o  t h e  h a l f  angle reduction 

are shown. 

t h e  added sur face  area. 

Subsequent s t u d i e s  ( a l s o  discussed i n  Sec t ion  4.7.7) t o  i n s t a l l  t h e  

The 

The f i n a l  nozzle design 

The ca l cu la t ed  preeeure loes at  c r u i s e  increased t o  0.37% due t o  

4.7.8 Nacelle I n s t a l l a t i o n  Aerodynamics 

The nace l l e  design w a s  defined t o  minimize drag and weight cons i s t en t  with 

requi red  i n s t a l l a t i o n  cons t r a in t s .  A base l ine  under-the-wing nace l l e  w a s  f i r s t  

i d e n t i f i e d  on an i s o l a t e d  b a s i s .  The i n s t a l l e d  n a c e l l e  w a s  subsequently defined 

cons ider ing  the  t o t a l  n a c e l l e / i n s t a l l a t i o n  drag  and c o n s t r a i n t s .  

4.7.8.1 Nacelle Requirements and Cons t r a in t s  

For d iscuss ion  purposes, i t  i s  convenient t o  consider the  nace l l e  a s  a 

blended combination of two nace l les :  

shown i n  Figure 4.7-26. 
b a s i s  from the  following two i n i t i a l  conditions.  F i r s t ,  the nozzle afterbody 

w a s  the i n i t i a l  design (15' afterbody) d iscussed  i n  Sec t ion  4.7.7. And, sec- 

ond, i t  w a s  decided t o  make t h e  maximum diameter of  t he  engine nace l l e  equal 

t o  t h e  maximum diameter of t he  prop nace l l e  a t  a forward point near t h e  loca- 
t i o n  of t h e  prop nace l l e  maximum diameter. 

s t a r t i n g  poin ts .  
t h e  f i g u r e  w a s  then defined by determining the  minimum drag conf igura t ion ,  

t h e  engine nace l l e  and prop nace l l e  as 

An engine nace l le  was f i r s t  defined on an -isolated 

Figure 4.7-27 shows these two 

The dashed l i n e  portion of t h e  i s o l a t e d  n a c e l l e  contour i n  
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trading skin-friction drag for pressure drag. 
reduced by employing a small afterbody radius of curvature which reduces the 
average diameter of the nacelle and the surface area. However, the smaller 

radius of curvature will tend to increase afterbody pressure drag. A trade 

study was conducted to determine the opthum combination for minimum drag. 
The nozzle afterbody and nacelle diameter limited the range of variation as 
shown in Figure 4.7-28. The study showed an almost insignificant difference 

in drag between the two limits; 0.03% Fn at cruise with the maximum envelope 
case having lower drag. 
decided to "shade" the nacelle toward the minimum envelope side to keep the 
weight down. 

forebody. 
Figure 4.7-29. 

Skin friction drag can be 

Because the two drags were so very close, it was 

An Rc/Dmax = 3.0 was selected and blended to Dmax with a 1' 

This initial design, isolated nacelle (engine) flowpath is shown in 

4.7.8.2 Isolated Nacelle Desi= 

The inlet flowpath analysis discassed in Section 4.7.3 established the 

relative axial spacing of the isolated nacelle components. This included the 
prop-to-inlet spacing and inlet-to-engine face spacing. 
of the inlet is also the bottom centerline of the nacelle. 

The bottom centerline 

The next step in the nacelle definition was the blending of the prop 
nacelle with the engine nacelle. Structural requirements dictated that the 
prop nacelle diameter be maintained constant at Dmax = 0.3/Dprop aft of the 
max diameter point. 
of the nacelle. 
connection as shown by the schematic in Figure 4.7-30. 
inlet analysis selected the diverter height, and a planform view of the 

diverter was used to define the diverter blendout starting from an initial 
half angle of 30". 
midpoint of the engine nacelle. 
station cuts are also shown in the above figure. 

This results in a "barrel-type" structure along the top 
The blending of the two nacelles was a simple slab-sided 

With this portion of 

The diverter was completely blended out at about the axial 
The diverter planform view and several 
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1 .  Xu Envelope; Cylindrical Forebody with 3.8 (hrgest Valu) 
lhx 

2. WUn Envelope, Smallest Rcl 2.5 
Dm 

Turbine 
Frame 
Flange 

Figure 4.7-28. Engine Nacelle Envelope L i m i t s .  

23.656 
(No22 le 

I t I 
Exit) 

0 I I I I I 

-30 -20 -10 0 10 20 30 -50 4 0  
Distance From Turbine Prac Rear Flange. in. 

Figure 4.7-29. Nozzle Afterbody I n i t i a l  Design. 

263 



A-A Pro j EC t ion 

I 4 

A B C D E F 

Figure 4.7-30. APET Diverter Contour. 
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4 .7 .8 .3  I n s t a l l e d  Nacelle 

Most of  the o v e r a l l  n a c e l l e  was  now def ined  on an i s o l a t e d  bas i s .  Nacelle 

placement w a s  next e s t ab l i shed  from two parameters. Axial placement r e l a t i v e  t o  

t h e  wing was determined by maintaining a minimum c lea rance  between t h e  prop and 

wing leading  edge on t h e  inboard s ide.  

of t h e  l o c a l  wing chord as shown i n  Figure 4.7-5. Vertical spacing w a s  set by 

t h e  requirement t o  maintain a four  inch-spac ing  between t h e  wing lower su r face  

and t h e  engine nace l l e  contour a t  the t u r b i n e  rear frame. 

requi red  t o  provide r o d  f o r  t he  required s t r u c t u r a l  member t o  connect the  

engine and wing. 

This  c learance  amounted t o  one-fourth 

This  spacing was 

This requirement i s  shown on Figure 4.7-31. 

The last  t a s k  was t o  "blend out" t h e  n a c e l l e  a t  the  wing-nacelle i n t e r f a c e  

i n  t h e  reg ion  of t h e  nozz le /nace l le  af terbody.  Attempts t o  do t h i s  with t h e  

n a c e l l e  as def ined  r e s u l t e d  i n  c losure  rates which were considered too  l a r g e  

i n  view of  the  f a c t  t h a t  t h r e e  bodies (wing, nace l l e ,  and pylon) and were a l l  

c l o s i n g  out  simultaneously.  For t yp ica l ,  high-bypass turbofan i n s t a l l a t i o n s ,  

t h e  s t r u c t u r a l  pylon i s  r e l a t i v e l y  narrow and is  e a s i l y  f a i r e d  over. 

case o f  t h e  turbo-prop i n s t a l l a t i o n ,  the  requirement f o r  t he  cons tan t  n a c e l l e  

diameter  "barrel-s t ructure"  r e s u l t s  i n  a very wide "pylon" (same width as the  

engine nace l l e )  a t  the  wing leading  edge. I n  o rde r  t o  c l o s e  t h i s  pylon out  

and not  have a pylon nea r ly  equal i n  width to  t h e  nozzle  a t  t h e  nozzle  e x i t  

'plane, the  pylon c losu re  becomes excessive.  Figure 4.7-32 p i c t o r i a l l y  d i sp l ays  

t h e  c loseou t  problem of t h e  t h r e e  bodies; each body " turns  away" from the  

o t h e r  c r e a t i n g  a s i g n i f i c a n t  d i f f u s i n g  channel along the  af terbody.  

appeared t h a t  a lengthening of t he  nozzle af terbody w a s  required t o  reduce the  

s e v e r i t y  of t h e  closeout .  A nozzle  extension of  about 15 inches r e l a t i v e  t o  

t h e  i n i t i a l  design,  15' af terbody was the  end r e s u l t  of t h i s  e f f o r t .  

reduced t h e  nozzle  af terbody angle  t o  10' and the  pylon c l o s u r e  h a l f  angle  was 

comparable a t  11.. With t h i s  c losure  rate, the  pylon f a i r i n g  extends pas t  the  

wing t r a i l i n g  edge by about 1 7  inches and r e q u i r e s  a small  f a i r i n g  t o  go for-  

ward a s h o r t  d i s t a n c e  over t he  upper su r face  of t h e  wing. 

In  t h e  

It 

This 

It w a s  not  appropr i a t e  f o r  t h i s  APET study t o  a t tempt  a soph i s t i ca t ed ,  

three-dimensional computational eva lua t ion  of  t h e  nace l l e  geometry t o  analyze 

and design t h e  flowpath. L i t t l e  technology c u r r e n t l y  e x i s t s  t o  a s s e s s  drag 
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4" Structural 

Figure 4.?-31. APET Nacelle Structural Requirements. 

sect A-A 

u n  This Region 

pylon/ 1 Wing Both Change in 
Afterbody I ntersdon This Region 

Figure 4.7-32. APET Afterbody Closure. 
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increments associated with turboprop installations. Thus, the nacelle config- 

uration, with the exception of the inlet, was determined by the forementioned 

qualitative approach using general guidelines. 

integration is a particular area of concern, and, in a detailed, development 

program, computational analyses and wind tunnel tests would be conducted to 

identify an optimum system. 

tion technology is addressed in the Development Plan, Section 12. Also, the 

scope of the M E T  study was not sufficient to make an equivalent evaluation 

of an over-the-wing nacelle as has been shown in the sketches numbered 2, 4 ,  
and 5 of Figure 4.7-7. 

Successful nacelle aerodynamic 

This need to develop turboprop nacelle installa- 

4.7.9 Nacelle Drag Calculation 

The nacelle external drag includes both friction and pressure drag on the 

entire nacelle aft of the prop spinner trailing edge and directly up to the 

wing surface. Conventional techniques currently employed in high bypass tur- 

bofan nacelle analysis Were used to calculate the nacelle friction drag. 
technique treats the nacelle as a flat plate and calculates the average, incom- 

pressible flat plate skin friction coefficient assuming a turbulent boundary 

layer. The Frankl-Voishel cpmpressibility correction is applied to account 

for Mach number effects. The specific equations for this calculation are as 

f 01 l o w s  : 

This 

K = Cfc 
frit 'fi ~ f i  Qo Asurf r D 

where : 

Cfi 0.455 (loglo Rn)'2-58 Avg, flat plate, turbulent friction 
coefficient 

-0.467 
2 2 -  [l + (q) H02] Cfi 

Compressibility correct ion 

Y 2 = - P M  
qo 2 0 0  
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T 1.5 
0 = 2 '27  (To + 0 198.6 ) 

and : 

M, = Reference f rees t ream Mach number average prop d ischarge  Mach 
number 

Po = Ambient pressure ,  p s i a  

To = Ambient temperature,  ' R 

y = Ratio of s p e c i f i c  h e a t s  1.4 f o r  a i r  

g = Gravi ta t iona l  cons tan t  = 32.174 f t / s ecZ  

R = Gas cons tan t  = 53.35 f t - l b / l b  ' R 

C = Charac te r i s t i c  n a c e l l e  length ,  f t .  

Asurf = Nacelle su r face  area, 'sq. inches 

KR = Roughness f a c t o r  

Resul t s  of t h i s  technique have been compared a g a i n s t  d e t a i l e d  boundary 

l a y e r  analyses  and have been shown t o  be i n  very good agreement with the  

de t a i  1 ed ana lys i s  approach . 
For a x i s m e t r i c  o r  s emi -e l l i p t i ca l  n a c e l l e s ,  t h e  de te rmina t ion  of s u r -  

f ace  a r e a  f o r  the f r i c t i o n  drag c a l c u l a t i o n  i s  s t ra ight forward .  For n a c e l l e s  

such as the  turboprop nace l l e ,  t he  wide v a r i a t i o n  i n  n a c e l l e  shape i s  handled 

by p l o t t i n g  nace l le  per imeter  versus  s t a t i o n  and i n t e g r a t i n g  the  curve.  Since 

the  APET nace l l e  su r face  a r e a  i s  so h igh ly  "front-loaded", use of a charac te r -  

i s t i c  length  based d i r e c t l y  on n a c e l l e  l eng th  to c a l c u l a t e  t h e  average f r i c -  

t i o n  c o e f f i c i e n t  w i l l  r e s u l t  i n  a drag which w i l l  be lower than the  t r u e  va lue .  

This i s  because s i g n i f i c a n t l y  more su r face  a r e a  i s  loca ted  near  t he  f ron t  of 

t h e  n a c e l l e  where the  l o c a l  Reynolds numbers a r e  lower and the  l o c a l  sk in  

f r i c t i o n  c o e f f i c i e n t  i s  higher .  To account f o r  t he  su r face  a r e a  d i s t r i b u t i o n  

unique t o  t h i s  nace l l e  design,  c a l c u l a t i o n  o f  t he  n a c e l l e  drag a t  c r u i s e  was 
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performed in three sections treating each section independently and adding up 

the total drag. 
overall nacelle drag, and a characteristic length was subsequently determined 

which gave the same drag as the "integrated" drag. The resulting characteris- 

tic length was 134 inches compared to a physical nacelle length of 223 inches. 
Use of the physical length would have calculated the friction drag low by 

-9 lb at M.8/35K. This information was included in the engine cycle deck 

to allow evternal nacelle friction drag calculation at any flight condition 

and power setting. 

Then, several nacelle lengths were used to calculate the 

Analytical and experimental studies have shown that for conventional 

separate flow turbofan nacelles, the nacelle pressure drag is typically 15 to 

20 percent of the friction drag. 
percent for long duct nacelles. From the standpoint of nacelle fineness 

ratio, the turboprop nacelle is more like a long duct nacelle, and it would be 

This drag ratio range is about 10 to 15 

expected to have similar drag relationships. 

as defined and analyzed herein, includes all surfaces and fairings exclusive 

of the wing. Thus, it is not the clean, relatively axisymmetric, design of 

conventional long duct nacelles. 

closer to the 15 to 20 percent range of the separate flow nacelles. 
reason, it was assumed that the pressure drag would be 17.5 percent of the 
friction drag. 

would require subetantiation/verification in a wind tunnel test. 

However, the turboprop nacelle, 

It is expected that the pressure drag may be 
For this 

As with the basic nacelle/installation design, this drag level 

4.7.10 Mounting and Vibration Isolation 

The figures referenced and shown in Section 4.7.2 that depict the nacelle 

concepts designed for this study included only cursory considerations of engine 

and gearbox mounting and dynamic suspension. 

1500 lb' in weight and with an 8000 RPM output driveshaft - presents no signi- 
ficant problem unless it becomes part of the system of dynamics which include 

the gearbox and the propfan. 

turboprop offset-drive installations directly couple the engine and gearbox in 
a mechanical manner which combines the two major elements into a single entity 
from the point of view of propulsion system mounting and dynamic suspension. 

The engine alone - approximately 

As is well understood, the T56, T64 and CT-7 type 
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It i s  

systems t o  

by no means c l e a r  t h a t  t h e  up-scale from t h e  c u r r e n t  4-5000 SHP 

the  12,500 SHP of the  APET engine i s  b e s t  addressed by des igns  t h a t  

a r e  s i m i l a r  t o  these h i s t o r i c a l  examples, and t h e  APET n a c e l l e s  shown assume 

t h a t  the  engine and gearbox are s e p a r a t e l y  mounted from the  dynamic viewpoint.  

This  change i s  somewhat r a d i c a l  and would have t o  be j u s t i f i e d  i n  f u r t h e r  s tudy 

e f f o r t s  because i t  in t roduces  t h e  problem t h a t  t h e  engine d r i v e s h a f t  must use  

coupl ings which have degrees of f l e x i b i l i t y  a t  both t h e  engine and gearbox 

d r i v e  in t e r f aces .  

Follow-on APET s t u d i e s  a l ready  planned w i l l  address  t h i s  problem a r e a  and 

hopefu l ly  provide some design ideas  and guidance f o r  t he  fu tu re ,  high horse- 

power, turboprop i n s t a l l a t i o n s .  For the  cu r ren t  APET s t u d i e s ,  t h e  base l ine  

o f f s e t  gearbox has been examined i n  conjunct ion with the  Lord Manufacturing Co. 

of  E r i e ,  Pa. 

gearbox and propfan t h a t  has  r e s u l t e d  from a prel iminary design d iscuss ion .  

A l l  gearbox torque loads are reac ted  by t h e  l i n k s  shown t h a t  terminate  

i n  Po in t s  A and B.  Loads a t  these  two p o i n t s ,  due t o  torque r e a c t i o n  only ,  

are t ransmi t ted  d i r e c t l y  t o  the  n a c e l l e  s t r u c t u r e .  A n t i v i b r a t i o n  mounting 

material can be included i n  a sandwich which forms p a r t  of t h e  pedes ta l  type 

support  brackets  t h a t  enclose the  l a rge ,  l a t e r a l l y  disposed, torque tube.  

Addi t iona l  elastomer may a l s o  be introduced a t  the  end f i t t i n g s  t h a t  j o i n  the  

o f f s e t  l e v e r s  t o  t he  torque tube.  

Figure 4.7-33 shows one approach t o  t h e  dynamic suspension of t he  

Thus, t he  add i t iona l  mount po in t s  i d e n t i f i e d  a s  C, D, E and F play no p a r t  

i n  r e a c t i n g  torque and may be optimized f o r  t he  i s o l a t i o n  of t h r u s t ,  v e r t i c a l  

and s i d e  loads,  o r  combinations thereof .  This  system a l s o  has  exce l l en t  redun- 

dancy f o r  s a fe ty  aspec ts  t h a t  would be considered i n  any f i n a l  design - such a s  

wh i r l /  f l u t t e r  phenomena and analyses .  

4.7.11 Mainta inabi l i ty  and A c c e s s i b i l i t y  

The nace l le  designed f o r  t he  base l ine  engine with o f f s e t  gearbox has 

a l ready  been i l l u s t r a t e d  ( s e e  Figure 4.7-4). 
a c c e s s i b i l i t y  i s  discussed below: 

The concept f o r  m a i n t a i n a b i l i t y /  

The engine and gearbox a r e  loca ted  and mounted w i t h i n  t h e  n a c e l l e  a s  

s e p a r a t e  e n t i t i e s  and a r e  coupled t o  each o t h e r  by a d r i v e  s h a f t  t h a t  uses 
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Figure 4.7-33. Anti-Vibration Mount Concept for APET Turboprop Gearbox. 
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f l e x i b l e  couplings a t  each end. 

permi t  removal of the  d r i v e s h a f t  proper without  r e q u i r i n g  any a x i a l  d i sp l ace -  

ment of t he  engine o r  the  gearbox. 

lower cowling doors and v i a  t h e  s p e c i a l  access  doors  i n  each s i d e  of t he  

n a c e l l e  opposi te  t h e  rear face of t h e  propfan gearbox. 

Both these  coupl ings use f lange  j o i n t s  t h a t  

Access t o  these  j o i n t s  i s  v i a  the  l a r g e  

I n  t h i s  manner, t h e  engine and gearbox i n s t a l l a t i o n  or removal can be 

e f f e c t e d  without d i s turbance  t o  each o the r .  The engine i s  three-point sup- 

ported by the  nace l le  mountings provided and i s  instal led/removed by pure ver- 

t i c a l  motion. 

provided and i s  instal led/removed by pure axial  motion. 

f a n  c o n t r o l s  are  modular and may be i n s t a l l e d  or removed without  d i s t u r b i n g  

o t h e r  components or assemblies.  

The gearbox is four-point supported by the  n a c e l l e  mountings 

The PCM and the  prop- 

The engine in le t  i s  shown as p a r t  of a removable assembly, a s  i s  the  

engine exhaust d u c t .  

p r i o r  t o  engine removal and would be r e i n s t a l l e d  a f t e r  t he  engine has been 

locked t o  the  nace l le  mounts. Access provis ions  have been loca ted  so t h a t  

i n s t a l l a t i o n  or removal i s  i n  a s t r a i g h t  forward manner. 

t h e  t h r e e  nace l l e s  designed f o r  the  APET s t u d i e s  a r e  included as Figures  

4.7-34, -35, and -36. These ske tches  are be l ieved  t o  be self-explanatory i n  

showing t h e  p r inc ipa l  f e a t u r e s  t h a t  have been designed t o  a s su re  adequate 

ma in ta inab i l i t y .  

Both these  assemblies would be removed from the  n a c e l l e  

"Exploded" views of 

4.7.12 Systems and Controls  

The development of t h e  design concepts shown i n t o  a d e t a i l  cons ide ra t ion  

of t h e  engine i n s t a l l a t i o n  might possibly be of va lue  i f  f u r t h e r  APET s t u d i e s  

a r e  warranted. This  i s  p a r t i c u l a r l y  t r u e  of the  FADEC system and the hea t  

exchanger i n s t a l l a t i o n .  The FADEC system is  recommended i n  the  Development 

Plan i n  Sect ion 4.12 as a key technology i t e m  and is the  sub jec t  of i t s  own 

development and c o s t  plan.  

forward and within cu r ren t  design and hardware experience.  

A l l  t he  o t h e r  systems are deemed t o  be s t r a i g h t -  

4.7.13 F i r e  Safety 

I s o l a t i o n  of zones wi th in  the  nace l l e s  has  been ind ica t ed  on the  n a c e l l e  

s t u d i e s  made. The high-speed turboprop i n s t a l L a t i o n  does not appear t o  have 
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any unusual requirements f o r  f i r e  s a f e t y  except with regard t o  the  c a r e  taken 

t o  p r o t e c t  t he  engine and p rope l l e r  c o n t r o l  means from degrada t ion  o r  des t ruc-  

t i o n  by i n t e r n a l  nace l l e  f i r e s .  Obviously, t h e s e  a r e a s  w i l l  r e q u i r e  c a r e f u l  

a t t e n t i o n  i n  any f i n a l  des ign  e f f o r t .  F i r e  ex t ingu i sh ing  and n a c e l l e  v e n t i l -  

a t i o n  w i l l  be more demanding than t h e  low-speed turboprop because of the  low- 

drag  na tu re  of t he  n a c e l l e  aerodynamic design and t h e  d e s i r e  t o  keep e x t e r n a l  

flow excrescences to  a minimum. 

4.7.14 Performance Comparisons - Turbofan Versus Turboprop 

4.7.14.1 I n s t a l l a t i o n  Models 

Simplif ied i n s t a l l a t i o n  models f o r  both the  turbofan  and turboprop a i r -  

c r a f t  were used i n  t h i s  s tudy.  

drag items t h a t  a r e  d i f f i c u l t  t o  asess o r  t h a t  are c o n t r o v e r s i a l .  R e s t r i c t -  

i n g  t h e  i n s t a l l a t i o n  models t o  "basic" drags  y i e l d s  a c l e a r  p i c t u r e  of t he  

fundamental d i f f e rences  between t h e  two propuls ive  systems although admi t ted ly ,  

some of t he  omitted drags  may have s i g n i f i c a n t  consequences. 

a r b i t r a r y  es t imates  a t  t h i s  po in t  i n  t i m e  would cloud t h e  p i c t u r e  t o  the  poin t  

S impl i f i ca t ion  w a s  achieved by e l imina t ing  

However t o  make 

t h a t  

s i v e  
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more harm than good may r e s u l t .  

I t e m s  included i n  t h e  i n s t a l l e d  performance drag bookkeeping are :  

0 Nacelle Scrubbing 

0 Nacelle P r e s s u r e  Drag 

0 A Wing Scrubbing Due t o  A Mach No. 

0 Gearbox Heat Exchanger 

0 

Items acknowledged bu t  omitted are: 

0 Swirl  Angle of Attack Induced A L i f t ,  A Drag 

0 Swirl  Recovery 

0 Compressibil i ty E f f e c t s  

0 Nacelle/Wing/Propwash I n t e r a c t i o n  

The a p p l i c a b i l i t y  of t h e  va r ious  included drag i tems t o  the  two propul- 

systems i s  shown i n  Figure 4.7-37. 

Boundary Layer Dive r t e r  and Nacel le  Purge System 
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Nacelle F r i c t i o n  Drag 

Nacelle Pressure  Drag 

Ram Recovery 

Spi 1 lage  

Prop/Gearbox Losses 

Bounday Layer Dive r t e r  
and Purge System 

- - -. - - - - - _- - - __ 

Turbofan Turboprop 

X 

X 

1 

+ 
X 

X 

.. . 
e Constant 1-1/2% I n l e t  AP Subtracted From Prop Hub 

1 AP Rise 

e 

+ Included in Nacelle Drag 

Prop Hub AP and AT Rise Included i n  Cycle Bookkeeping 

~ ~ ~~ ~~ 

Figure 4.7-37. APET-Instal la t ion Loss Bookkeeping. 

Design d e t a i l s  f o r  t h e  n a c e l l e  and i n l e t  along with a d e s c r i p t i o n  of drag 

c a l c u l a t i o n  have a l ready  been shown i n  t h i s  Sect ion.  

t h e  bookkeeping system and a summary of r e s u l t s  are presented here .  

A b r i e f  d e s c r i p t i o n  of 

The wing and nace l l e  scrubbing model i s  shown i n  Figure 4.7-38. The wing 

area, less t h e  nace l l e  f o o t p r i n t ,  scrubbed by the  prop wash i s  charged with 

drag  r e s u l t i n g  from t h e  change i n  Mach number through t h e  prop ( A M ) .  

n a c e l l e  i t s e l f  i s  charged with drag r e s u l t i n g  from t h e  full prop d ischarge  

Mach number (M, + AM). 
of t he  n a c e l l e  f r i c t i o n  drag. 

The 

The n a c e l l e  pressure  drag  is  considered t o  be 15-20% 

The hea t  exchanger l o s s ,  Figure 4.7-39. can be put i n t o  two ca t egor i e s ;  

duc t ing  and external l o s s e s  and hea t  exchanger c o r e  loss. The ductng and 

e x t e r n a l  loss e s t ima t ion  procedure a re  f a i r l y  s t r a i g h t  forward. The hea t  

exchanger core  i s  more complex; i t  opera tes  as a pressure  l o s s  genera tor  and 

provides  h e a t  add i t ion  t o  t he  flow. 

ac ross  the  core  are important t o  determining t h e  hea t  exchanger i n t e r n a l  drag. 

The p res su re  loss and temperature r i s e  
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Figure 4.7-38. APET P rope l l e r  Gearbox Figure  4.7-39. APET P r o p e l l e r  Gearbox 
Related Drag Accounting - 
Prop Wash Drag. 

Related Drag Accounting - I 
Gearbox Heat Exchanger. 

General E l e c t r i c  contacted a hea t  exchanger manufacturer,  Hughes-Treitler 

Manufacturing Corporation, who provided a pre l iminary  hea t  exchanger design 

based on t h e  APET turboprop s p e c i f i c a t i o n .  

suppl ied by Hughes-Treitler i s  given i n  F igure  4.7-40. 
d i v e r t e r  and purge system loss i s  a s soc ia t ed  with a turboprop and not  with a 

turbofan.  

loss w a s  estimated. 

The c r i t i c a l  hea t  exchanger d a t a  

A boundary l aye r  

The boundary l a y e r  d i v e r t e r  loss was analyzed but  t he  purge system 

A t y p i c a l  loss breakdown f o r  an end of climb f l i g h t  condi t ion  i s  shown 

i n  Figure 4.7-41. 

impact of c r u i s e  speed and p a r t  power on i n s t a l l a t i o n  loss l e v e l  i s  shown i n  

Figure 4.7-43. 

Climb path loss l e v e l s  a r e  shown i n  Figure 4.7-42. The 
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4.8 MISSION ANALYSES 

4.8.1 Scope 

As ind ica ted  earlier i n  Sec t ion  4.2.4, mission analyses covered both 

turbofan and turboprop powered a i rp l anes  a t  the three  c ru i se  design Mach num- 

b e r s  of  0.70, 0.75 and 0.80. 

f o r  i t s  se lec ted  c r u i s e  Mach number. 

p u t e t  using a General E l e c t r i c  mission ana lys i s  program which ( f o r  t h i s  study) 

w a s  l imi t ed  t o  estimates of fue l  burn and f l i g h t  t i m e  expended i n  the follow- 

ing f l i g h t  modes: 

Each a i rp lane  ( s i x  i n  a l l )  w a s  a point des ign  

The analyses were performed on a com- 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Takeoff ( f u e l  allowance only) 

Constant a l t i t u d e  acce le ra t ion  

Constant Mach number climb 

Constant a l t i t u d e  and Mach number c r u i s e  

Constant Mach number climb to optimum Breguet c r u i s e  a l t i t u d e .  

Constant a l t i t u d e  and Mach number c r u i s e  a f t e r  discontinuous change 
i n  a l t i t u d e  and Mach number 

Breguet c r u i s e  

Decelerated descent along a s p e c i f i e d  pa th  

Constant Mach number descent 

Maneuver mode (used f o r  reserves).  

- 

The nondimensional a i r c r a f t  drag c h a r a c t e r i s t i c s  (drag polar )  and weight 

w e r e  input ted  t o  t h e  program. A matrix of engine performance d a t a  (ne t  t h r u s t  

as a func t ion  of a l t i t u d e  and Mach number) w a s  run on t h e  cyc le  deck and 

placed i n  a f i l e .  This  f i l e  w a s  then read by t h e  mission program. 

The mission program "flew" a "rubbnr" a i rp l ane .  That is ,  a i r c r a f t  weight, 

engine weight and engine t h r u s t  w e r e  adjusted ( sca led)  t o  match t h e  mission 

requirements. 

r e f l e c t  t h e  complex i n t e r a c t i o n  of engine t h r u s t  - SFC c h a r a c t e r i s t i c s  and 

a i r c r a f t  design. 

The output of t h e  mission program ( a i r c r a f t  weight, f u e l  burn) 

Wing loading and th rus t  loading were sys t ema t i ca l ly  var ied .  
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The computer program w a s  a l s o  capable of  determining the  e f f e c t s  of small  

changes and, hence, could be used t o  obta in  s e n s i t i v i t y  f a c t o r s .  

Airplane weight e s t ima t ing  procedures have a l r eady  been discussed i n  

Sec t ion  4.2.5 and w i l l  not  be repeated here .  However, i t  should be noted t h a t  

t he  s e n s i t i v i t y  s t u d i e s  included the  e f f e c t s  of  both propuls ion and a i r c r a f t  

s t r u c t u r e  weight assumptions, and these  are la te r  repor ted  i n  the  Sec t ion  

devo t ed t o  "Sensi t i v  i t i e s "  . 
Operating c o s t s ,  as descr ibed  i n  Sec t ion  4.1.3, used the  ATA method, with 

Boeing modif icat ions,  updated t o  the  1981 economy. 

p r i c e s  used in-house methodology, while f u e l  p r i c e  w a s  sub jec t  t o  p r i o r  agree- 

ment with NASA and was set a t  $1.50 f 0.050 pe r  ga l lon ;  

A i r c r a f t  and propuls ion 

Acoustic and emission ana lyses  of s e l e c t e d  mission s i z e d  a i r p l a n e s  were 

a l s o  made and a r e  repor ted  later i n  t h i s  s e c t i o n .  

4.8.2 Measures of Merit 

Three measures o f  m e r i t  were considered;  f u e l  burn,  a v a i l a b l e  seat m i l e s  

per  ga l lon  (ASM/GAL) and d i r e c t  opera t ing  c o s t  (DOC). Fuel burn i s  the most 

d i r e c t  measure of e f f i c i e n c y ;  i t  depends s o l e l y  on the  technica l  accuracy of  

t he  a i r c r a f t  performance , a i r c r a f t  weight and engine performance. 

as d i r e c t  a measure as f u e l  burn but has some of the  advantages of  a nondimen- 

s i o n a l  parameter i n  t h a t  i t  can be used f o r  d i r e c t  comparison of advanced 

technology and cur ren t  technology a i r c r a f t / e n g i n e  systems. The DOC measure 

of  m e r i t  i s  the m o s t  a l l  encompassing index, and the  one most important t o  

opera tors .  The DOC, however, i s  the  most d i f f i c u l t  of  the  three  measures to  

assess accura te ly .  The ve ry  element t h a t  makes the DOC valuable ,  incorpora- 

t i o n  of economic f a c t o r s ,  a l s o  inc reases  the unce r t a in ty  of  i t s  value.  

ASM/GAL i s  

4.0.3 Fuel P r i c e  Forecas t  

The Statement of Work (SOW) f o r  t h i s  s tudy c a l l e d  f o r  the Contractor  t o  

estimate the  fu tu re  expected p r i c e  of f u e l  and then conduct Di rec t  Operating 

Cost (DOC) analyses  wi th  t h e s e  va lues  of f u e l  p r i c e .  In t h e  p a s t  

p r i o r  t o  1973, t h e  p r i c e  of a v i a t i o n  f u e l  was both low and p red ic t ab le .  
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Currently,  t h e  p r i c ing  of f u e l  is i n  a state of f l u x ;  and p red ic t ions  of 

f u t u r e  f u e l  p r i c e  vary considerably from one source t o  another.  The f u t u r e  

c o s t  of t h e  f u e l  relative t o  c o s t s  of o t h e r  goods and services is  an 

important parameter i n  comparing t h e  economics of d i f f e r e n t  airframe/engine 

systems as f u e l  c o s t  is t h e  dominant items amongst t h e  n ine  t h a t  c o l l e c t i v e l y  

make up t h e  DOC of an  a i rp l ane .  Of these n ine  DOC elements, two are 

independent of i n f l a t i o n a r y  pressures,  i.e., u t i l i z a t i o n  and block d i s t ance .  

Six of t h e  remaining items (airframe and engine pruchase p r i c e ,  spa res ,  

dep rec i a t ion ,  insurance,  maintenance and crew c o s t s )  were a l l  sub jec t  t o  

similar economic fo rces  and i n f l a t i o n a r y  pressures .  \Fuel p r i c e s ,  however, 

because f u e l  is a dep le t ab le  resource i t e m ,  is  sub jec t  t o  d i f f e r e n t  economic 

pressures  and a l s o  i s  s e n s i t i v e  t o  p o l i t i c a l  condi t ions .  

I 
a 
I 
I 
I 

4.8.4 DOC Method 

A s  p a r t  of the  economic assessment of the a i r c r a f t ,  unit a i rp l ane  f ly-  

away p r i c e s  have been estimated by dividing the  a i r p l a n e  i n t o  t w o  bas ic  cate- 

go r i e s  - (1) Airframe, inc luding  avionics,  and (2 )  Propulsion. 

r e l a t i o n s h i p s  were devised t o  allow for  the  v a r i a t i o n  of a i r f rame p r i c e  w i t h  

v a r i a t i o n s  i n  a i rp l ane  size. 
d a t a  contained i n  the  following two reports:  

Estimating 
I 
8 
I 

1 

These r e l a t ionsh ips  were pr imar i ly  based on the  

0 NASA CR-151970 "Parametric Study of Transport Systems., . . .Weight" -- 
Report by "Science Applications, Inc., 'I Published i n  Apr i l  1977. 
(Reference 33) 

Society of All ied  Weight Engineers Paper 1416 "Price-Weight Rela- 
t ionships  of  General Aviation, Helicopters,  Transport A i r c r a f t  and 
Engines" dated May 1981, by Joseph L. Anderson. 

0 

(Reference 25) 

I n  addi t ion  t o  the above, General E l e c t r i c  used Hamilton-Standard da ta  

f o r  es t imat ing  propfan and c o n t r o l s  pr ice  and maintenance c o s t s  and used 

in-house programs for  es t imat ing  engine, gearbox, and n a c e l l e  s t r u c t u r e  and 

system c o s t s  t o  achieve t o t a l  propulsion system cos t s :  

Three DOC methods have been evaluated i n  d e t a i l .  They a r e :  

0 EURAC method (Reference 31). 
8 

0 ATA method as modified by Boeing and updated t o  1981 (Reference 
32). 

0 NASA method (Reference 30). I 
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Current ly ,  t h e  pr ic ing  of f u e l  is  i n  a state of f l u x ;  and p r e d i c t i o n s  of 

f u t u r e  f u e l  p r i ce  vary considerably from one source  t o  another .  

c o s t  of t h e  f u e l  r e l a t i v e  t o  c o s t s  of o t h e r  goods and services is  an 

important parameter i n  comparing t h e  economics of d i f f e r e n t  a i r f rame/engine  

systems as f u e l  c o s t  is  t h e  dominant i t e m s  amongst t h e  n i n e  t h a t  c o l l e c t i v e l y  

make up t h e  DOC of an a i rp l ane .  

The f u t u r e  

c 

Of t h e s e  n i n e  DOC elements ,  two are 

independent of  i n f l a t i o n a r y  p res su res ,  i .e.,  u t i l i z a t i o n  and block d i s t ance .  

S ix  of t h e  remaining i t e m s  (a i r f rame and engine pruchase p r i c e ,  s p a r e s ,  

dep rec i a t ion ,  insurance,  maintenance and c r e w  c o s t s )  w e r e  a l l  s u b j e c t  t o  

similar economic f o r c e s  and i n f l a t i o n a r y  preqsures .  

because f u e l  i s  a dep le t ab le  resource  i t e m , ' i s  s u b j e c t  t o  d i f f e r e n t  economic 

p res su res  and a l so  i s  s e n s i t i v e  t o  polit1,cal  condi t ions .  

/' 
Fuel  p r i c e s ,  however, 

/ I  

4.8.4 DOC Method 

A s  p a r t  of the  economic assessment of  the  a i t c r a f t ,  u n i t  a i rp l ane  f ly -  

away p r i c e s  have been est imated by d i v i d i n g  the  a i r p l a n e  i n t o  two bas ic  cate-  

g o r i e s  - (1) Airframe, inc luding  p i o n i c s ,  and ( 2 )  Propuls ion.  

r e l a t i o n s h i p s  were devised t o  a l iow f o r  t he  v a r i a t i o n  o'f. a i r f rame p r i c e  with 

v a r i a t i o n s  i n  a i rp lane  s i z e .  

d a t a  contained in  the  following two repor t s :  

Est imat ing 

These r e l a t i o n s h i p s  were pr imar i ly  based on the 

i 
0 NASA CR-151970 "Parkmetric Study of Transport  Systems,. . . .Weight" -- 

Report by "Science 'Applications,  Inc .  , I 1  Published i n  Apr i l  1977. 
(Reference 33) i' 

0 Society o f  A l l i e  Weight Engineers Paper 1416 "Price-Weight. Rela- 

ove, General E l e c t r i c  used Hamilton-Standard da ta  
\ 

f o r  es t imat ing  propfan a d c o n t r o l s  p r i ce  and maintenance c o s t s  and used ' 

in-house programs f o r  e i t imat ing  engine,  gearbox, and n a c e l l e  s t r u c t u r e  and 

system c o s t s  t o  achieve t o t a l  propuls ion system c o s t s :  

t ionships  of Gen ral  Aviat ion,  Hel icopters ,  Transport  AircraSt  and 
Engines" dated a y  1981, by Joseph L. Anderson. (Reference 25) 

I n  addi t ion  t o  the  

Three DOC methods have been evaluated i n  d e t a i l .  They a r e :  

0 EURAC method (Reference 31). 

0 ATA method as modified by Boeing and updated t o  1981 (Reference 
32). 

0 NASA method (Reference 30). I 
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I n  terms of the  i n s t a l l e d  performance turbofan ve r sus  turboprop mission 

assessment r e s u l t s  are l i s t e d  in Table 4.8-1. 

o f  300 N. M i .  the  curve of  f u e l  burn ve r sus  Mach number i s  very f l a t ,  as t h e  

f u e l  burn va lue  changes only  a s m a l l  amount f o r  t h e  v a r i a t i o n  between Mach 0.70 

and Mach 0.80. (170 pounds d i f f e r e n c e  a t  300 N. Mi. f o r  t h e  turbofan ,  and 130 

pounds f o r  t he  turboprop). 

senger over the  "ranking" mission a r e  r e a l l y  i n s i g n i f i c a n t  and i n d i c a t e  q u i t e  

c l e a r l y  t h a t  the se l ec t ed  c r u i s e  speed f o r  some f u t u r e  high speed turbofan ( o r  

turboprop) short-haul a i r p l a n e  w i l l  be d r iven  by o t h e r  f a c t o r s  than j u s t  the  

f u e l  burn values  ca l cu la t ed  here .  Nevertheless ,  the  d i f f e rence  i n  f u e l  burn 

between the  turbofan and turboprop, i r r e s p e c t i v e  of  t he  se l ec t ed  c r u i s e  Mach 

number, i s  around 18 percent .  This value  may s e e m  lower than those repor ted  

i n  o the r  propulsion s t u d i e s ,  but  i s  be l ieved  t o  be q u i t e  accu ra t e  f o r  the 

APET a i r p l a n e s  analyzed. P a r t  of  the  reason may be t h a t  the  APET turboprop 

a i r p l a n e  i s  charged ( a t  c r u i s e  speed) with 2.4 percent  more i n s t a l l a t i o n  l o s s  

than the turbofan. Other d i f f e r e n c e s  may l i e  i n  the ve ry  high performance of 

the  advanced design, E3 type,  turbofan engine i n s t a l l e d  i n  a mixed flow 

nace l l e .  The s i m i l a r i t y  of  a l l  the  a i r p l a n e s  s tud ied  and the  weights t h a t  

have been used, p r a c t i c a l l y  preclude anything but propuls ive e f f i c i e n c y  pro- 

v id ing  the  d e l t a  f u e l  burns. The i n s t a l l e d  SFC of  the  three  d i f f e r e n t  Mach 

number a i r p l a n e  des igns  i s  shown i n  F igure  4.8-3, which d i r e c t l y  compares the 

turbofan  ve r sus  turboprop a t  t h e i r  c o r r e c t  c r u i s e  t h r u s t  s i z e  va lues  f o r  t h e  

po in t  des ign  a i rp l anes  on a s tandard  day. 

Mach number and these  percent  va lues  are less than  the percent  va lues  calcu-  

l a t e d  f o r  t h e  mission f u e l  burn. The reason f o r  t h i s  is t h e  l a r g e  advantage 

of  t h e  turboprop during t h e  climbout t o  c r u i s e  a l t i t u d e .  This comparison is  

shown on Figure  4.8-4 ( f o r  a non-standard day) whi le  F igure  4.8-5 compares 

( f o r  t w o  Mach numbers) t h e  mission f u e l  usage of turbofan versus  turboprop a t  

1000 N. Mi. and 300 N. M i .  From he re  i t  can be seen  t h a t  t h e  climb f u e l  

dominates t h e  bar c h a r t  f o r  t h e  s h o r t e r  range f l i g h t s .  

A t  the "ranking" mission range 

These va lues  o f  about one pound of f u e l  per  pas- 

The bucket SFC's are shown f o r  each 

4.8.6 Fuel Burn Analyses R e s u l t s  - A l t e r n a t e  S tud ie s  

During the  course of the  M E T  s t u d i e s ,  some ques t ions  were r a i sed  by NASA 

and the  USAF Propulsion Laboratory r e l a t i v e  t o  an eva lua t ion  of some a l t e r n a t e  

conf igu ra t ions  and design parameters.  The o b j e c t i v e  of these  i n q u i r i e s  was 
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Table 4.8-1.  APET Turbofan/Turboprop Mission Assessment. 

0 1000 nn msipl Range 
0 300 1111 baking Mission 

8950 l b  

3460 lb 

TOCW 

OeW 

Wz/6 Ian or Booater 

WT/a Core 

Fan DiaPcter 

Rop Dircter 

FNIN e 0.21s~ 1 27' 

Fuel Burned 

Design Misaioa 

bnkiag Mission 

0.801 
Reference 

TF 

111970 

64390 

721 

56.1 

4.9' 

- 
13940 

9270 l b  

3700 lb 

Do0 

Base 
TP 

110990 

65490 

63.3 

40.0 

-- 
12.5' 

14870 

0.751: 

Refereace 
TF 

109310 

62480 

679 

52.8 

4.8' 

-- 
13120 

Hw) 

Baae 
TP 

108850 

64080 

61.1 

38.7 

I 

12.3' 

14370 

-13.2% 

-17.4% 

0.70/:  
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TF 
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65 7 

51.1 
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- 
12690 
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BPR = 7.1 
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'd 
rn 

-13.1% 

TP 
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.45 
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.45 
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TP 
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63100 
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-18.0% 
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Figure 4.8-3.  N E T  Installed Performance Comparisons Base l ine  TF Versus 
Baseline TP. 
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t o  quan t i fy  the  va lue ,  or  l e v e l ,  of improved performance t h a t  i s  a t t r i b u t a b l e  

t o  each of the  assumptions made f o r  the d e f i n i t i v e  APET a i r p l a n e  and i t s  

s e l e c t e d  turboprop propuls ion system. 

Consequently, e f f o r t s  were made t o  modify the  mission a n a l y s i s  computer 

program with r ev i s ions  t o  the input  assumptions. The NASA c o n t r a c t  required 

t h a t  the  APET turboprop performance be evaluated i n  the  Mach Cruise  Range of 

0.70 t o  0.80, a t  c r u i s e  a l t i t u d e s  tha t  are t y p i c a l  f o r  the cu r ren t  generat ion 

of turbofan powered a i r p l a n e s .  Therefore,  changes were made towards de f in ing  

what t he  d i f f e r e n c e s  might be  between an a i rp l ane  designed f o r  s e rv i ce  c i r c a  

1972 versus  one designed f o r  s e rv i ce  in  1992. 

r ized below: 

These d i f f e r e n c e s  a r e  summa- 

The max imum payload range point  would be f ixed  a t  2000 N. M i .  (versus  
the  APET l i m i t  of  1000 N. M i . ) .  

The weight o f  t he  a i r p l a n e  would use 1972 l e v e l  of technology (versus  
the  APET 1992 level). 

The turbofan propuls ioa  system weight and s p e c i f i c  f u e l  consumption 
would be r e l a t e d  t o  CF6-50 technology (versus  the  APET E3 + tech- 
nology). 

The wing would be non-supercr i t ical  i n  a i r f o i l  s e c t i o n  and would be 
designed f o r  an aspec t  r a t i o  of 9 (n ine)  (versus  the  M E T  supercr i -  
t i c a l  assumption with an aspect r a t io  of 11). 

F ina l ly ,  t he  q u a n t i t a t i v e  value of the  E3 f a n  as a propulsor  would 
be changed (APET uses  the  H-S prop fan) .  
were evaluated one a t  a time, but not  n e c e s s a r i l y  i n  the  order  pre- 
sented above. 

These l e v e l s ,  or s t e p s ,  

Table 4.8-2 shows i n  t e r m s  of  both reduct ion  of Takeoff Gross Weight 

(TOGW) and f u e l  burn the  b e n e f i t s  which accrue due t o  the performance improve- 

ments pos tu la ted  f o r  the  turbofan powered APET a i rp l ane .  These r e s u l t s  a r e  

a l s o  depic ted  on Figure 4.8-6 which g raph ica l ly  po r t r ays  the d a t a  of  Figure 

4.8-2 with the  s t e p s  enumerated above, and which a l s o  includes the b e n e f i t s  

due to the propfan. 

4.8.7 Mission Analyses - S e n s i t i v i t i e s  

The convent ional  

and drags w e r e  va r i ed  

parameters o f  SFC f o r  va r ious  mission segments, weights 

t o  determine the  r e s u l t a n t  a i r p l a n e  s e n s i t i v i t v  a t  
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Table 4.8-2. Technology Study - Turbofan C i v i l  Transport  Study - 150 PAX. 
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Figure 4.8-6. APET Resul t s  Fuel Burn Versus Technology Versus MCR Versus 
Range, 65% L.F. 
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both  the 1000 N. Mi. design range, and t h e  300 N. Mi. "ranking" range. These 

r e s u l t s  are shown ( f o r  t h e  Mach 0.80 turboprop) i n  Table 4.8-3. 

Overa l l  SFC i s  c l e a r l y  the  m o s t  s e n s i t i v e  parameter, followed by a i r c r a f t  

s t r u c t u r a l  weight and drag ( C D ~ ) .  

accord with va lues  shown on o ther  contractor s t u d i e s  i n  t h e  l i t e r a t u r e  and a r e  

the re fo re  believed t o  reasonably represent the APET a i rp l anes .  

These s e n s i t i v i t y  r e s u l t s  are gene ra l ly  i n  

Table 4.8-3. M E T  Mission S e n s i t i v i t i e s .  

0.8M - Design Turboprop 

Parameter I 
SFC C r u i s e  +1% 

-1% 

SFC Climb + 1% 
-1% 

SFC Descent + 1% 
-1% 

SE'C Overall +1% 
-1% 

Propulsion Weight +I.% 
-1% 

A/C Drag (0) +1% 
-1% 

A/C St ruc tu re  Weight +1% - 1% 

X A Fuel ; 
Design Range 

M.66 
-0.65 

M.33 
-0.33 

+0.03 
-0.03 

+l. 14 
-1.12 

+o. 10 
-0.09 

+O .60 
-0.58 

+O .62 
-0.60 

4.8.8 Mission Analyses - DOC Results 

ir ned 
300 NMI 

+o. 18 
-0.18 

+O .64 
-0.64 

+o. 08 
-0.08 

+I .03 
-1.01 

+o.11 
-0.11 

+0.53 
-0.51 

+0.69 
-0.67 

Table 3.1-1 given i n  the "Program Overview" Sec t ion  has a l r eady  l i s t e d  

the  DOC parameters t ha t  were se lec ted  f o r  APET analyses.  

input t o  the computer programs, DOC values were obtained a t  the ranking m i s -  

s i on  f o r  a l l  s i x  APET a i rp l anes ,  w i t h  th ree  d i f f e r e n t  va lues  f o r  f u e l  p r i ce .  

These resul ts  a r e  shown on Table 4.8-4. 

Using these  d a t a  as 
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Table 4.8-4.  APET DOC Resul t s  - APET Base l ine  Cases Propuls ion 
P r i ces  Equal. 

Propuls ion Type Turboprop 

Design Mach No. 0.7 0.75 0 . 8  

DOC (Fuel  @ $l.OO/Gal) 0.0311 0.0314 0.0320 

DOC (Fuel @ $1.50/Gal) '0.0352 0.0355 0.0362 

DOC (Fuel @ $2.00/Gal) 0.0392 0.0396 0.0404 

DOC i n  $ ' s /Passenger /S ta tu te  Mile 

Turbofan 

0.7 0.75 0 . 8  

0.0334 0.0336 0.0344 

0.0383 0.0386 0.0395 

0.0432 0.0435 0.0447 

The DOC'S i n  t h i s  t a b l e  are as c a l c u l a t e d  using t h e  ATA method, modified 

by Boeing and are i n  1981 d o l l a r s .  

p r i n t o u t .  

Table 4.8-5 g ives  a sample of t h e  computer 

A supplemental breakdown, d i r e c t l y  a p p l i c a b l e  t o  the  f l i g h t  case  analyzed 

and reported i n  Table 4 .8 -6 ,  is given i n  Table 4.8-7.  

A p l o t  of the DOC r e s u l t s  f o r  t he  poin t  des ign  a i rp l anes  f l y i n g  a t  t h e i r  

design Mach number a t  the Figure of Merit range of 300 nmi i s  shown i n  Figure 

4.8-7.  Additional da t a  on t h i s  f i g u r e  shows the  e f f e c t  of  the  poin t  des ign  

Mach 0 .80  turbofan and turboprop a i r p l a n e s  f l y i n g  a t  the  reduced c r u i s e  speed 

of Mach 0 .70 .  Also, t he  e f f e c t  of  reducing c r u i s e  a l t i t u d e  from 35 thousand 

f e e t  t o  30 thousand f e e t  is a l s o  noted. 

Figure 4.8-8 d e p i c t s  the  r a t e  of change i n  DOC as v a r i a b l e  f u e l  cos t  

assumptions and v a r i a b l e  engine p r i c e  assumptions a r e  made f o r  turbofan and 

turboprop a i rp l anes .  A t  the  r e l a t i v e  t o t a l  p r i c e  of turbofan versus  turbo- 

prop a i r p l a n e  equal t o  un i ty ,  and with the  p r i c e  of f u e l  pegged a t  1.50 

d o l l a r s  per  gal lon,  the  turboprop a i r p l a n e  has  a favorable  r e l a t i v e  DOC of 

j u s t  over e igh t  percent .  
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Table 4.8-5. APET Baseline Turboprop Mach 0.8 Design 
Price of Fue l  $1.50. 

A i rc ra f t  Data 

Aircraf t  : APET Engine: GE-APET 
T/O Gross Wgt. lbs  : 110986. Number of Seats: 150 
Airframe Weight l b s  : 51930. . No. of C r e w  Members: 2 
Propfan Dia. fee t  : 12.5 

Operating Data: Domestic Flight 

Stage Length S t .  M i .  : 345.0 
Block Time h r s  : 1.134 
Ground Maneuver Time H r  : 0.24 

Financial  Data 

A/F Price $ : 12467000. 
Propulsion Sys.  $EA : 3628094. 
Fly-Away Price $ : 19723188. 

A/F 

Spare Ratio: 0.06 
* Depreciation Period Y r s :  15.0 

Residual Value X : 10.0 

- 

Calculated Data 

Contributing Factors 

Uti l izat ion,  Block H r s / Y r  
Total  Investment, $ 

Depreciation 
Insurance 
Crew,  Cockpit Only 
Fue 1 
Airframe Labor, Burden Inc 1. 
Airframe Material 
Engine Labor, Burden Incl .  
Engine Material 

Block Fuel l b s  : 2922.0 
Shaft Horsepower: 11389.0 
Assumed Number Trips/Year: 2960 

Pr ice  of Fuel $/Gal : 1.500 
Labor Rate $/M-hr : 14.19 
Maint. Burden ‘ X  : 200.0 
Fuel Price Base Yr. :  81 . 

Core Propfan GE Nacelle - - 
0.30 
15 .O 
10.0 

3356.6 
22429998. 

$/Block Hour 

400.91 
29.36 

356.33 
573.45 
134.61 
29.09 
51.15 
75.83 

Cost t o  Fly = $959.14/Block Hour 

Direct Operating Cost 

$/Block Hours $/ST. M i .  $/ASM 
1650.73 5.43 0.0362 

0.30 0.30 0.06 
15.0 15.0 15 .O 
10.0 10.0 10.0 

$/St.  M i .  

1.3178 
0.0965 
1.1712 
1.8849 
0.4400 
0.0956 . 
0.1681 
0.2492 

$/Flight H r  

2097.79 
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Table 4.8-6. APET Baseline Turbofan Mach 0.8 Design 
Pr ice  of Fuel $1.50. 

Aircraft Data (APET-Fan Engine) 

T/O Gross Wgt. l b s  : 111970. Number of Seats: 150 
Airframe Weight l b s  : 50974. No. of C r e w  Members: 2 

Operating Data: Domestic F l igh t  

Stage Length S t .  M i .  : 345.0 Block Fuel l b s  : 3578.0 
Block Time h r s  : 1.136 Thrust l b s  : 17429 .O 
Ground Maneuver Time H r  : 0.24 Assumed Number Trips/Year: 2960 

Financia l  Data 

A/F Price $ : 12540000. P r i ce  of Fuel $/Gal : 1.500 
Propulsion Sys. $EA : 3628094. Labor Rate $/M-hr : 14.19 
Fly-Away Pr i ce  $ : 19796188. Maint. Burden X : 200.0 

Fuel P r i c e  Base Y r . :  81 

A/F Core Reverser Nacelle - 
Spare Ratio: 0.06 0.30 0.30 0.06 
Depreciation Period Y r s :  15.0 15 .O 15.0 15.0 
Residual Value % : 10.0 10 .o 10.0 10.0. 

Calculated Data 

Contributing Factors 

Ut i l iza t ion ,  Block H r s / Y r  
Tota l  Investmeut, $ 

Depreciation 
Insurance 
Crew,  Cockpit Only 
Fue 1 
Airframe Labor, Burden Inc 1. 
Airframe Material  
Engine Labor, Burden I n c l .  
Engine Material 

3362.6 
22477040. 

$/Block Hour 

401.05 
29.41 

367.49 
700.96 
132.84 
28.53 
50.55 
90.51 

$ /S t .  M i .  

1.3206 
0.0968 
1.2101 
2.3081 
0.4300 
0.0939 
0.1665 
0.2480 

Cost t o  Fly = $1097.86/Block Hour 

Direct Operating Cost 

$/Block Hours $/ST. M i .  $/ASM $/F l i g h t  H r  

1801.34 5.93 0.0395 2288.09 
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Table 4.8-7. APET Baseline Turbofan Mach 0.8 Design 
Supplemental Breakdown. 

Airframe : 
Core Engine ( 8  : 
Reverser(s) : 
Nacelle(s1: 

Totals: 

Investments 
(Incl . Spares) 
13292400. 
7567121. 
520400. 
1097 119. 

2247 7040. 

Note: Burden included in labor 

Materia 1 
, $/B. Hr. 

040 

.039 

.038 5 
4 

I .037 

\ 
<I, 

u 
0 - 

n .036 

.035 

.034 

Depreciation 
$/B. Hr. 

237.18 
135.02 
9.28 
19.57 

401.05 

Insurance 
$/B. Hr.. 

18.64 
8.65 
0.59 
1.53 

29.41 

Labor 
$/B. Hr. 

132.84 

0. 
0. 

50.555 

183.390 

28.53 
88.443 
1.822 
0.246 

119.038 

Effect of Flight Speed 
Fuel Cost-$l.SO/Gal 

0 Design Point Cases 
OA .8M Cases Flown at . 7 M  

fi Turbofan 

p Turboprop 

.70 .75 .80 

Flight Mach No. 

Figure 4.8-7. APET Economic Results - Baseline Cases. 
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Effect of Uncertainty in Propfan Propulsion Prices 
.8M Design - 300 NMI Leg 

1.00 

.98 

.96 

T2 .94 
b b  

- 
- 
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Total Price of TF Propulsion System 1 

8 

Figure 4.8-8. APET DOC Comparisons 
Propf an Vs . Turbofan. 
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4.9 ACOUSTICS 

4.9.1 Methodology and Assumptions 

4.9.1.1 A i r c r a f t  P l i g h t  Conditions 

Three d i f f e r e n t  a i rp l ane  designs were a c o u s t i c a l l y  evaluated i n  t h i s  

s tudy.  

They are: 

A l l  t he  a i rp l anes  a r e  twin-engined and have under-wing-nacelle layouts .  

1. Mach c r u i s e  = 0.80, turbofan powered 

2. Mach c r u i s e  = 0.80, turboprop powered 

3. Mach c r u i s e  = 0.70, turboprop powered 

Tables o f  d a t a  for the  f l i g h t  condi t ions  a t  t he  acous t i c  measuring p o i n t s  

are noted i n  Appendix 11. 

4.9.1.2 P r o p e l l e r  Noise 

NASA-CR-145105 and SAE A I R  1407 (References 44 and 45) were used t o  

develop a pre l iminary  des ign  methodology which computed a sca led  OASPL based 

on the  SAE procedures discussed i n  t h e  NASA CR. This procedure is  discussed 

i n  more d e t a i l  i n  Appendix 11. 

4.9.1.3 Compressor/Fan Noise 

A NASA developed method was  used f o r  t he  turboprops and f o r  t he  f an  i n l e t  

and d ischarge  noise  f o r  t he  turbofan.  

X-71763 (Reference 49).  The method determines one-third octave band SPL's fo r  

broadband, d i s c r e t e  tone and combination-tone noise  components. This  is a l s o  

discussed i n  Appendix 11. 

The method i s  reported i n  NASA TM 

4.9.1.4 Turbine Noise 

Turbine noise  has  been predicted using techniques d iscussed  i n  A I A A  

7 5 4 4 9  (Reference SO) which is  based on r i g  and engine d a t a  t h a t  c o r r e l a t e s  

p re s su re  r a t i o ,  t i p  speed and e x i t  areas. This  p red ic t ion  method i s  f u r t h e r  

d i scussed  i n  Appendix 11. 
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4.9.1.5 Combustor Noise 

The p red ic t ion  methodology used f o r  t h i s  component i s  developed from SAE 
ARP 876B, Appendix "D" (Reference 51) and i t  c o r r e l a t e s  pred ic ted  combustor 

no ise  with mass flow rate ,  i n l e t  t o t a l  p re s su re ,  t o t a l  temperature  r i s e  and 

the  t o t a l  temperature e x t r a c t i o n  assoc ia ted  with the  take-off cond i t ions .  

Appendix 11 a l s o  expands on the  methodology used. 

4.9.1.6 Airframe Noise 

NASA TN-D-7821 (Reference 52) is used f o r  t h i s  p red ic t ion ,  The equat ions 

used, and d e f i n i t i o n  of terms i s  included i n  Appendix 11. 

4.9.1.7 Jet Noise 

These predic t ions  a r e  made using t h e  procedure descr ibed i n  SAE ARP 876B - 
Appendix A (Reference 53) and i s  based on a c o r r e l a t i o n  of fully-expanded mean 

j e t  v e l o c i t y ,  temperature r a t i o ,  nozzle  a rea  and St rouhal  number. 

s i v e  model da t a  base is i n  ex i s t ence  t o  support  t h i s  p r e d i c t i o n  methodology. 

Appendix I1 contains  the equat ions t h a t  are used and t h e  d e f i n i t i o n  of terms. 

An exten- 

4.9.1.8 F l i g h t  P red ic t ions  and Adjustments 

A i r  a t t enua t ion  and co r rec t ions  are based on the  method published i n  SAE 

ARP 866 (Reference 54) and ground r e f l e c t i o n  c o r r e l a t i o n  and r e l a t i o n s h i p s  use 

the  method shown i n  FAA Report RD-71-85 (Reference 5 5 ) .  

f o r  s p h e r i c a l  divergence a i r  a t t enua t ion ,  ground r e f l e c t i o n ,  Doppler s h i f t i n g ,  

dynamic e f f e c t s ,  j e t  noise  f l i g h t  e f f e c t s ,  and e x t r a  ground a t t enua t ion .  

Appendix 11 for f u r t h e r  d e t a i l s .  

The procedure c o r r e c t s  

See 

4.9.1.9 Cabin Noise 

I n  paragraph 4.9.1.2 the  re ferences  are given f o r  t h e  establ ishment  of the 

propfan as a noise source,  and n e a r f i e l d  values  have been appl ied t o  es t imates  

f o r  t he  sound pressure l e v e l  a t  the  fuse lage  wal l .  

l o s s  is  appl ied and t h i s  then determined an A-weighted i n t e r i o r  SPL. Trans- 

mission l o s s e s  through the  wal l  are est imated using the  method descr ibed i n  

A cab in  wal l  t ransmiss ion  
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NASA CR 159200 (Reference 5 7 ) .  Appendix IS, Table 11.1-2 gives  the  va lues  of 

t he  t ransmiss ion  l o s s  ( i n  dB) versus  frequency. 

Condition 

Takeoff 

Cut Back 

Sideline 

Approach 

4.9.1.10 Treatment Assumptions 

0.1 Uach 0.8 Mach 0.8 Mach 
Turbofan Turboprop Turboprop 

IM;w - 111,970 lbr TOW - 110,986 lbs Tocw - 107,309 lbs 
FAR Crtimatcd FAR E~timatad FAR Estimated 
36 Level Il.rgin 36 Level M q i n  36 Level:- Margin 

(CPNdB) (gPNdB) (CPUdB) (splrdB) (CPNdB) (CPNdB) (CPNdB) (CPNdB) (EPNdB) 

89.3 85.8 3.5 89.3 90.5 -1.2 89 . I  90.2 -1.1 

89.3 85.3 4.0 89.3 88.9 0.4 89.1 88.1 0.4 

95.4 91.3 4.1 95.4 95.4 1.9 95.2 93.2 2.0 

99.3 94.9 4.4 99.2 97.2 2.0 99.1 96.7 2.4 

The two turboprop engines i n  t h i s  s tudy  do not  r e q u i r e  any t reatment  

su r faces .  The turbofan r equ i r e s  f an  i n l e t ,  f an  exhaust and tu rb ine  treatment 

areas and t h e  m a t e r i a l s  and technologies used are s i m i l a r  to  those developed 

during the  course of t he  NASA/GE E3 program. 

assumed i n  terms o f  AdB versus Hz a re  g iven  i n  Tables  11 .1 -3A and-3B included 

i n  Appendix 11. 

D e t a i l s  of the  suppression l e v e l s  

4.9.2 Evaluat ion 

The t h r e e  s tudy a i r c r a f t  have been a c o u s t i c a l l y  evaluated r e l a t i v e  t o  FAR 

36, 1978 Stage I11 l i m i t s  as d i c t a t e d  by t h e  FAR P a r t  36 r egu la t ions  (Refer- 
ence 58) Table  4.9-1 g ives  the  r e s u l t s  o f  t hese  eva lua t ions ,  and these  r e s u l t s  

are also included i n  Appendix 11. 

Table 4.9-1. APET A i r c r a f t  Noise Levels. 

4.9.2.1 Mach Cruise  = 0.80, Turbofan 

As can be determined from Table 4.9-1 t h i s  a i r p l a n e  w i l l  meet the  FAR 36 
l i m i t s  wi thout  t r ades .  Some observat ions on o t h e r  f a c t o r s  that would h e l p  

improve the  system margins are included i n  Appendix 11, and a l s o  where the  

component l e v e l s  are given i n  Table 11.2-2 

f o r  t h i s  a i r c r a f t  and t h e  t w o  turboprop a i r p l a n e s .  

f o r  va lues  a t  the  measuring point  
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4 .9 .2 .2  Mach Cruise  = 0.80, TurboproE 

This  a i rp lane  w i l l  a l s o  meet the  FAR 36 l i m i t s  us ing cutback. For a l l  

condi t ions  examined t h e  p rope l l e r  generated n o i s e  dominates and system no i se  

thus becomes d i r e c t l y  dependent on p r o p e l l e r  acous t i c  l eve l  reduct ions .  

4 . 9 . 2 . 3  Mach Cruise = 0.70, Turboprop 

The remarks above f o r  t he  Mach = 0.80 a i r p l a n e ,  equa l ly  apply.  

4 . 9 . 3  Conclusions and Recommendations 

This s tudy shows t h a t  f o r  t h e  a i r p l a n e s  considered,  FAR 36 Stage I11 

l i m i t s  can be met, and t h a t  the  NASA o b j e c t i v e  f o r  cabin i n t e r i o r  no i se  i s  

a l s o  wi th in  reach f o r  some fuse lage  acous t i c  t reatment  weight penal ty .  

of t he  turboprop a i r p l a n e s  i s  foreseen provided source noise ( t h e  p r o p e l l e r )  

i s  capable  of some reduct ion.  This  may w e l l  be provided by a combination of 

reduced tip-speed a t  take-off and some improvement i n  the  blades acous t i c  

s igna tu res .  

Growth 
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4. 10 EMISSIONS 

The exhaust streams of a i r c r a f t  tu rb ine  engines usua l ly  conta in  very  low 

concent ra t ions  of ob jec t iona l  gaseous and p a r t i c u l a t e  emissions. 

a i r c r a f t  tu rb ine  engines do produce exhaust emissions of concern from an a i r  
p o l l u t i o n  standpoint.  These emissions, i n  t he  category of a i r  p o l l u t a n t s ,  

c o n s i s t  of carbon monoxide (CO), unburned o r  p a r t i a l l y  oxidized hydrocarbons 

(HC), oxides  of n i t rogen  (NO,), and carbon p a r t i c u l a t e s  such as soot o r  
smoke. 

However, 

Emission s tandards  have been issued by t h e  U.S. Environmental P ro tec t ion  

Agency (EPA) t o  r egu la t e  t h e  q u a n t i t i e s  of  CO, €IC, NO,, and smoke emissions 

t h a t  may be discharged by var ious  d i f f e r e n t  ca t egor i e s  of  commercial engines 

when opera t ing  wi th in  o r  near a i r p o r t s .  The p resen t ly  prescribed standards,  

as published i n  the  Federal  Regis te r  of J u l y  1 7 ,  1973, f o r  newly c e r t i f i c a t e d  

l a r g e  tu rbo je t / t u rbo fan  and l a rge  turboprop engines, are presented i n  Table 

4.10-1 and Figures 4.10-1 and 4.10-2. 

are based on the  engine t h r u r t  r a t i n g  and t h e  turboprop standards are based 

on t h e  engine s h a f t  power ra t ing .  

two engines can be estimated, on a t o t a l  weight per  cyc le  b a s i s ,  using the  

appropr ia te  EPA prescribed landing-takeoff cyc le .  The cu r ren t  prescribed 

cyc le s  for  emissions c a l c u l a t i o n s  for  tu rbofan/ turboje t  and turboprop engines 

are presented i n  Table 4.10-2. 

The s tandards  f o r  t u r b o j e t  turbofan engines 

A d i r e c t  comparison of emissions f o r  t hese  

Some changes to t h e  p re sen t ly  prescribed s tandards  have been proposed by 

t h e  EPA. The proposed r ev i s ions  t o  the s tandards  were issued by t h e  EPA as a 

Notice of Proposed Rule Making (NPRM) on March 24, 1978. 

dards ,  fo r  newly c e r t i f i e d  large-size engines,  a r e  presented i n  Table 4.10-3. 

Metric (SI) u n i t s  are used f o r  these  new standards.  

The revised stan- 

Recently, extensive f u r t h e r  rev is ions  t o  t h e  NPRM s tandards  have been 

proposed by the  EPA. 

and NO, s tandards  and the  HC standard is relaxed. 

s tandards  are unchanged by these  proposed r ev i s ions .  

proposed r ev i s ions ,  p ro j ec t ions  of  the  emission r egu la t ions  appl icable  t o  

la rge-s ize  turboprop engines i n  the  post-1990 t i m e  period are as follows: 

The newly proposed revi'sions e l imina te  the  e x i s t i n g  CO 

However, t h e  NPRM smoke 

Based on these  c u r r e n t l y  
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Turbofan Engines r 08000 l b  Thrust)  

Table 4.10-1. Current Standards - Newly C e r t i f i e d  Large Engines. 

A l l  Turboprop 
Eng i n e  8 

(Federal  Reg i s t e r  - J u l y  17, 1973) 

co 
NOx 

Smoke No. 

3.0* 26.8+ 

3.0* 12.9+ 
(Pig. 4.1-4) (Fig.  4.1-5) 

0.4* 4.9+ 

~~ ~ ~ 

*Lbs / 1000 lb-Thrus t H r s  /Cyc l e  r %bs / 1000 RP-Hrs / Cyc l e  

Maximum A1 lowabl 
Smoke Number 

. 

Maximum Allowable 
Smoke Number 

VJ 

1 2 3 4 5 6  
Engine Rated Power (1000 SHP) 

10 20 30 40 50 60 
SLTO Thrust  (1000 l b s )  

Figure 4.10-1. EPA Smoke Emission 
S t avdard s -Turboprop 
Engines . 

Figure 4.10-2. EPA Smoke Emission 
Standards-Turbojet/  
Turbofan Engines. I 
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Tur boj  e t  /Turbo fan Eng i n e s  Turboprop Engines 

Time, Power Time Power 
M i  nut  e s Percent  M i  nut  e s Percent  

Tab l e  4.10-2. Current EPA Prescr ibed Cycles  f o r  Emissions Ca lcu la t ions .  

C 1  imbout 

- Approach 

Time-in-Mode at Percent  Rated Power 

2.2 85 2.5 90 

4.0 30 4.5 30 

Taxi I d l e  

Takeoff 

26 

0.7 

* 
100 

26 

0.5 

I * 
100 

Table 4.10-3. NPRM Standard - Newly C e r t i f i e d  Large Engines.  

(Federal  Regis te r  - March 24, 1978) 

€IC 

co 

Smoke No. 

Large Tur boj e t  / 
Turbofan Engines 
0 2 7  KN Thrust)  

Large/Turboprop 
Engines 

02000 KW Power) 

3.3* 

25.0* 

33.0* 

79* (KN ~ h r u s t ) + - 2 6 5  

0.045 t 

0.34 t 

0.45 t 

277* (KW Power)'0-280 

* G r a m s  pe r  Cycle/KN Thrus t  

t G r a m s  pe r  Cycle/KW Power 
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0 

0 

No CO and NO, standards. 

Less stringent HC standards - not l i k e l y  t o  be more stringent than 
NPRM values. 

0 Same smoke standards as proposed i n  the NPRM of 1978 (as  presented 
i n  Table 4.10-3).  
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4.11 MILITARY RELEVANCE 

A s  ind ica ted  i n  Section 1, many aspec t s  of t h i s  APET study have relevance 

t o  p o t e n t i a l  Mi l i t a ry  a i r c r a f t  programs t h a t  inc lude  Cargo A i r c r a f t  o r  o t h e r  

bulk a i r l i f ters .  Although no 

m i l i t a r y  s t u d i e s  have y e t  been conducted t h a t  use t h e  APET engine da t a ,  i t  i s  

recommended t h a t  some f u t u r e  work is i n i t i a t e d  t o  see what advantages might 

accrue if t h e  Mi l i t a ry  considered the  use  of high-speed turboprops f o r  some 

s e l e c t e d  missions. The "concern" items from t h e  APET study regarding Mi l i t a ry  

app l i ca t ions  are summarized i n  Table 4.11-2, and Figure 4.11-1 has been i n t r o -  

duced t o  i n d i c a t e  w h a t  t h e  s t r e t ched  vers ion  of t h e  Lockheed C 1 4 1  might look 

l i k e  if re-engined with APET technology propulsion systems. 

These a spec t s  are h ighl ighted  i n  Table 4.11-1. 

Table 4.11-1. M i l i t a r y  Relevance of t h e  APET Study. 

Turboshaft eugine computer decks can  be used f o r  both commercial 
and m i l i t a r y  appl ica t ions .  

Nacelle/engine/wing in t eg ra t ion  problems are similar (Mach 0.70 
t o  0.80 range). 

Engine weight p red ic t ion  methods are v a l i d  wi th in  the  sca l ab le  
range of approximately 8 - 18,000 SHP. 

Advanced gearbox design concepts w i l l  be i d e n t i f i e d .  

Development p lan  f o r  c r i t i c a l  technology components can be used 
equal ly  f o r  a m i l i t a r y  turboshaft  engine. 

In t roduct ion  of FADEC t o  propel le r  con t ro l s .  

Acoustic (and o the r )  "observables" are being quant i f ied .  

Fuel conservation and low maintenance cos t  ob jec t ives  a re  s imi la r  
shared by both the m i l i t a r y  and c i v i l  s ec to r s .  

Y 
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Table 4.11-2. Poss ib le  Dif fe rences  Between M i l i t a r y  and Commercial 
Propfan Propuls ion S e l e c t i o n  Fac to r s .  

Takeoff and landing performance may be  more important f o r  t h e  m i l i a r y  
a i r  1 i f  ter  . 
- This alters engine temperature r a t i n g s  and. a f f e c t s  t h r u s t  l apse  

Optimum propfan s e l e c t i o n  l i k e l y  t o  peak a t  lower SHP/D2 Loadings, 
lower t i p  speeds and poss ib ly  lower f l i g h t  speeds.  

r a t e  requirments.  

- Output torques ( through the  gearbox) may be h igher .  

A i rc ra f t  layout may be  r a d i c a l l y  d i f f e r e n t ,  causing s u b s t a n t i a l  
design changes t o  t h e  propuls ion system. 

- High wing most probable.  Nacel le  i n t e g r a t i o n  w i l l  be d i f f e r e n t .  

- Some unusual layouts  may be explored,  i .e .  t a i l  mounted engines ,  
pushers . 

Engine duty cyc le s ,  u t i l i z a t i o n  f a c t o r s  are d i f f e r e n t .  

- Differen t  r e l a t i v e  importance of f u e l  burn. 

- Economic cons idera t ions  a r e  aimed a t  reduced l i f e  cyc le  c o s t s  
r a the r  than the  DOC o r  ROI formulae used i n  commercial programs. 

Engine power s i z e  could be d r a s t i c a l l y  a f f e c t e d  by cons ide ra t ions  of  
4 r a the r  than  2-engined a i rp l anes .  
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4.12 RECOMMENDATIONS (INCLUDING DEVELOPMENT PLAN) 

4.12.1 In t roduct ion  

The APET Study has i d e n t i f i e d  numerous key technica l  a r eas  and concerns. 

The nace l l e  design, i t s  loca t ion  r e l a t i v e  to  t h e  wing and fuse lage  r equ i r e  t h e  

development of c r i t e r i a  before  an a i rp lane  design can be explored wi th  confi-  

dence. The power d r ive  t r a i n  which comprises t h e  s h a f t  engine, gearbox d r ive  

s h a f t  and gearbox are also key technology items requ i r ing  development tests 

which must include t h e  demonstration of l i f e  and r e l i a b i l i t y  t h a t  i s  compati- 

b l e  with commercial operation. 

c e r t a i n l y  r equ i r e  a spec ia l i zed  FADEC using advanced s igna l ing  techniques and 

microprocessors. 

Control over the engine and propfan w i l l  almost 

The propfan p i t c h  change mechanism and i t s  power source 

should be subjected t o  a sepa ra t e  design and development program, so t h a t  t h e  

opportunity t o  explore  w d e r n  concepts and devices i s  not overlooked. 

Figure 4.12-1 summarizes t h e  above i n  a p i c t o r i a l  manner. It may be seen 

t h a t  t h e  upper pa r t  of t h e  f i g u r e  i s  l a r g e l y  r ep resen ta t ive  of technology items 

t h a t  are p r i n c i p a l l y  a i r f r r c  de i ign  o r i en ted ,  although a propulsion company 

would b e  required t o  make subs t an t i a l  i npu t s  and f o r  some areas (e.g., t he  

engine i n l e t  and exhaust) they MY well be prime. 

f igu re  are t h e  d r ive  t r a i n  elements and con t ro l s  which toge ther  r e q u i r e  devel- 

I n  t h e  lower h a l f  of t h e  

opment i n t o  a well-matched system. These key areas  are t h e  prime respons ib i l -  

i t y  of t h e  propulsion company, and have the re fo re  been addressed i n  some depth 
i n  t h i s  study sectcon. 

4.12.2 Nacelle Placement 

A number of assumptions have been made i n  t h i s  study regarding t h e  des i r -  

ab le  ( f o r  performance and no i se )  placement of t h e  n a c e l l e s  on t h e  a i r p l a n e  

wing. 
f o r  t hese  cr i ter ia .  Airplane drag, weight, acous t ic  cons ide ra t ions ,  engine-out 

s a f e t y  and ma in ta inab i l i t y  are a l l  f ac to r s  which become impacted by t h e  n a c e l l e  

placement cr i ter ia .  

l e s s e r  ex ten t ,  bu t  t h e  e x c i t a t i o n  fac tors  through t h e  propfan plane may present 
a much more s i g n i f i c a n t  problem. 

Rigorous analyses are not possible i n  l i g h t  of t h e  lack  of a data base. 

The performance of t he  propfan may a l s o  be a f f e c t e d ,  t o  a 
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Wing weight and f l u t t e r  avoidance c r i t e r i a  with cons idera t ions  of t he  

propfan whi r l  phenomenon subsequent to  some assumed f a i l u r e  of a p r inc ipa l  

element i n  t h e  nace l l e  s t r u c t u r e  has  l ikewise not been addressed. The whi r l  

mode loadpath could p lay  a major r o l e  i n  t h e  n a c e l l e  s t r u c t u r a l  design concept 

and t h e  s e l e c t i o n  of t h e  methods and v a r i e t i e s  of t h e  d y n h c  suspension of 

both t h e  engine and t h e  propfan gearbox. 

The a i r c r a f t  aerodynamics, f o r  both c r u i s e  and h i g h - l i f t  conf igura t ions ,  

are also l a r g e l y  assumed due t o  t h e  lack of a d a t a  base; and t h e r e  are 

obviously some r e a l  ques t ions  t o  be answered regarding optimum f l a p  and o t h e r  

h i g h - l i f t  f ea tu re s ,  p a r t i c u l a r l y  leading edge h i g h - l i f t  devices. 

4.12.3 Thrust Matching . 

I n  t h i s  study t h e  turbopropfans have been designed t o  produce i d e n t i c a l  

t h r u s t  level8 as t h e  turbofans at 3SK a l t i t u d e ,  Mach 0.80 f l i g h t  speed, using 

maximum climb power. 
a i r p l a n e  has  superior runway and climbout performance when compared wi th  a 

high-bypass-ratio turbofan. Cred i t  or d e b i t  fo r  t h i s  takeoff  performance has 

been taken i n  t e r n  of t h e  f u e l  burned by t h e  competit ive systems, bu t  no 

o the r  s i d e  s t u d i e r  have been made t o  judge t h e  e f f e c t s  i f  some o the r  match 

point had been se l ec t ed .  

With t h i s  design point matched, t h e  propfan powered 

For example, i f  t h e  turbofan powered a i r p l a n e  w a s  constrained t o  have 

equal t akeof f  f i e l d  length c a p a b i l i t y  as t h e  turboprop, t h e  a i r p l a n e  wing s i ze  
would be increased as would a l s o  t h e  i n s t a l l e d  thrust-to-weight r a t i o .  

f a c t o r s  would cause add i t iona l  degradation of f u e l  burn values.  

These 

It i s  the re fo re  recommended tha t  NASA f u r t h e r  eva lua te  t h e  s e l e c t i o n  

c r i te r ia  f o r  t h r u s t  matching. 

4.12.4 Aeromechanical Loads 

NASA, at  t h e i r  Aaes wind-tunnel f a c i l i t y  and wi th  t h e  support of a i r -  

frame con t r ac to r s ,  are pursuing t h e  i n s t a l l a t i o n  aerodynamics of t h e  propfan 

and developing a n a l y t i c a l  techniques for' optimum i n t e g r a t i o n  of t h e  propfan 

f lowf ie ld  with the  wing. 

inc lude  the  measurement of t he  aeromechanical loads. 

It is recamended t h a t  t hese  e f f o r t s  be expanded t o  
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4 .12 .5  System Dynamics 

It i s  s t rongly  recommended t h a t  NASA c o n t r a c t s  f o r  t h e  dynamic s imula t ion  

of a turbopropfan propuls ion sys tem i n s t a l l e d  i n  a n a c e l l e  and coupled t o  a 

r ep resen ta t ive  wing. Both f a t i g u e  da ta  and mode loadpaths  can be predic ted  

and evaluated with good accuracy expec ta t ions .  

f o r  an engine and a i r p l a n e  design program. 

These d a t a  would be inva luable  

The forthcoming NASA PTA program should address  t h i s  t echn ica l  a r ea ,  and 

l a y  the  groundwork f o r  an improved computer sof tware  package t h a t  could be 

used i n  f u t u r e  propfan powered a i r p l a n e  s t u d i e s .  

4 .12 .6  Struc tures  1 

The nace l l e s  conceived i n  t h e  APET s tudy  are seen t o  be r a d i c a l l y  d i f f e r -  

e n t  from previous design experience.  A s t r u c t u r a l  design s tudy ,  poss ib ly  b e s t  

accomplished together  wi th  4 . 1 2 . 4  and 4 .12 .5  above, i s  recommended wi th  empha- 

sis  on advanced composite s h e l l  s t r u c t u r e s  in t eg ra t ed  wi th  t h e  a i r p l a n e  wing. 

Fireproofing of composite s t r u c t u r e s  i s  a l s o  an area of technology which 

needs some p rac t i ca l  test programs, and t h e s e  should be in t eg ra t ed  wi th  t h e  

above program. 

4.12.7 Nacelle Aerodynamics 

NASA should cont inue i n l e t  s t u d i e s  t o  t h e  ex ten t  of answering ques t ions  

regarding pressure  recovery behind t h e  propfan, i n l e t  s t a b i l i t y  i n  t h e  s w i r l i n g  

f lowf ie ld ,  and the  t rade-offs  which r e l a t e  t o  s i n g l e  o f f s e t  i n l e t s  ve r sus  two 

(or more) o f f s e t  i n l e t s .  

forebody geometry m u s t  a l s o  be determined. 

The important c r i t e r i a  f o r  l i p  shape and e x t e r n a l  

The exhaust system suppression e f f e c t s  due t o  t h e  propfan f lowf ie ld  should 

be t e s t e d  i n  a s ca l e  model program so t h a t  t h e  est imated nozzle  performance 

c o e f f i c i e n t s  can b e  v e r i f i e d .  

The current  NASA turboprop i n l e t  programs are noted a s  important s t e p s  

i n  def in ing  the  parameters for a w e l l  designed o f f s e t  i n l e t  con f igu ra t ion  

opera t ing  a t  high subsonic speeds. Some e x i s t i n g  tu rbosha f t  engine should be 
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s e l e c t e d  and an i n l e t  design should then  be t a i l o r e d  f o r  t h i s  engine.  The 

sysem should then be run i n  a tunnel  w i th  s imula t ion  of t h e  pulsed dynamic 

flow from t h e  root a r ea  of t he  propfan blade,  and a f u l l  s p e c t r a  of  i n l e t  

d i s t o r t i o n  parameters and engine o p e r a b i l i t y  c r i t e r i a  be demonstrated. 

4.12.8 Engine Low Pressure  Turbines 

As a l ready  ind ica t ed  i n  th i s  repor t ,  t h e  achievement of high t u r b i n e  

e f f i c i e n c y  using t h e  minimum number of t u r b i n e  s t a g e s  i s  a c r i t i c a l  i tem i n  

t h e  propuls ion system's development. 

t h e  s t age  pressure  r a t i o s  and wa l l  s lope angles  ( f l a r e d  su r faces )  a r e  beyond 

c u r r e n t  technology t e s t i n g .  Component aerodynamic and mechanical test  pro- 

grams are t h e r e f o r e  considered to be e s s e n t i a l  elements of any key technology 

development program. 

I n  order  t o  e f f e c t  a compact design,  

The goals f o r  t h e s e  programs are as follows: 

1. Develop technology t o  minimize aero losses as soc ia t ed  wi th  highly- 
sloped f lowpath conf igura t ions  

2. Incorporate  r e c e n t l y  developed OGV technology for l o w  r a d i u s  r a t i o  
APET flowpath 

Reduce Reynolds number e f f e c t s  on e f f i c i e n c y  3.  

The expected payoffs are as l i s t e d  below. 

1. Improved e f f i c i e n c y  via  loading reduct ion  f o r  f ixed  number of 
stages, or decreased c o s t ,  l eng th ,  and weight v i a  s t age  number 
reduct ion  a t  f ixed  e f f i c i ency  l e v e l  

2. P o t e n t i a l  f o r  0 . 5  p o i n t s  i n  ~ T T  f o r  more uniform stage-by-stage 
energy d i s t r i b u t i o n  allowed by OGV 

3. 

The approach t o  t h e  recommended program i s  as follows: 

Improved e f f i c i e n c y  f o r  a l t  i t u d e  opera t  ion  

1. Execute a two p a r t  r i g  t e s t  program t o  eva lua te  m u l t i p l e  approaches 
t o  accomplishing goals ,  including 

- Orthogonal Blading 

- Improved Trans i t i on  Duct Configurat ions 

- Improved Endwall Ax ia l  Gap Geometry 

- E f f i c i e n t  D e s w i r l  with Low Radius Ratio OGV's  
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It is considered t h a t  t h e  tes t  program should inc lude  t w o  b locks  of test-  

ing  with an appropriate  time being allowed for  hardware redes ign  between 

Block 1 and Block 2 .  The conf igu ra t ions  proposed a r e  noted below: 

1. Block I, c o n s i s t i n g  of 3 conf igu ra t ions  f o r  Stages 1 and 2 

2. Block 11, c o n s i s t i n g  of complete LPT conf igu ra t ion  inc luding  
redesigns of Stages 1 and 2 based on Block I results 

A comparison of t h e  f u l l  scale E3 LPT and t h e  sca l ed  s i z e d  APET configura-  

t i o n s  i s  given i n  Table 4.12-1. 

included i n  Table 4.12-2. 

The mechanical assessment being proposed is 

Table 4.12-1. Comparison of t h e  F u l l  Sca le  E3 and t h e  Scaled Sized APET 
Configuration. 

0-. 

Power 

b ines  

No. of Stages 

PR 

A/A 

Wall Slope 

Wave. 

rlT 

Goal 

5 

4.21 

3.58 

25' 

1.25 

0.917 

--- 

4 3 

7.6 7.8 

5.42 5.43 

27 O 36' 

0.95 1.17 

--- -- - - 0.92+ ___t 

(1% r l t  = 1% sfc) 
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Table 4.12-2. APET LPT Technology Mechanical Assessment. 

~~ 

Evaluation of aerodynamic f ea tu res  (high AN2, or thogonal i ty)  on blade 
s t res s /1 i f  e and v i b r  a t  ion  , include : 

0 Vibrations - Geometry Effec ts :  On Frequencies 

On Vibratory S t r e s s  D i s t r ibu t ion  

0 Fatigue - High Cycle Fatigue L i f e  E f f e c t s  of Geometry 

- Hot Engine Environment 

0 Photoe las t ic  - I d e n t i f y  Peak Local S t r e s s  Concerns 

- Modeled Using Vibration/Fatigue Hardware 

0 Configurations - Four Variations 

- Limited Quantity of P a r t s  (12 of Each Var ia t ion)  

The o v e r a l l  LPT technology plan and t h e  key mi les tones  are as shown i n  

Figure 4.12-2. 

4.12.9 Engine Low Pressure  Turbine Driven Booster Stages 

The APET engines in t h i s  r epor t  conta in  two-stage boos te rs  with v a r i a b l e  

i n l e t  guide vanes (VIGV's). 
about 1.75  ( t o t a l  f o r  t h e  two s t ages ) .  

between t h e  booster output (d r iven  by t h e  LP t u rb ines )  and t h e  compressor i n l e t  

(dr iven  by the  HP t u rb ines ) ,  some flow c o n t r o l  va r i ab le  geometry i s  required.  

This may be achieved by flow dumping v i a  i n t e r s t a g e  bleed va lves  (which i s  
was tefu l )  or by modulating t h e  flow v i a  t h e  V I G V ' s .  

The boost pressure  c a l l e d  f o r  i n  these  designs is 

In  order  t o  maintain flow matching 

Development test programs 

f o r  t h e  booster conf igura t ion  are e s s e n t i a l  t o  understand t h e  system behavior 

and t o  e s t a b l i s h  a methodology f o r  flow con t ro l  scheduling. A t es t  program t o  

v e r i f y  booster performance and cont ro l  scheduling i s  t h e r e f o r e  a l s o  a key 

component technology development recammendat ion. 

The program i d e n t i f i e s  some unique technology f e a t u r e s  r e l a t i v e  t o  cur- 

r e n t  state-of-the-art  boos te rs  a8 exemplified by t h e  T700 engine design. 

These f e a t u r e s  are i d e n t i f i e d  i n  Table 4.12-3. 
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L 

1985 1986 

Init ial  Design n, 
Air Turbine 

Der ign 4 
Bdvr Procurement A 
Inrtr. and Ars'y I A 
Teat A 

Mechanical Evaluation 

Design 4 
Bdvr Pr ocur ane nC 

Test 

A 

Incorporate Data 
into Design 

Figure  4.12-2. APET LPT Technology Plan .  

Table 4.12-3. APET Boos ter  Unique Technology Fea tu res .  

1987 1988 

A 
4 
A 

4 

n, 

1. Var iab le  Geometry Varies Flow a t  Constant  Speed 

- More E f f i c i e n t  a t  P a r t  Power (Low Flow, High Speed) 

- Low Loss Var iab le  I G V ,  S t a t o r  Conf igura t ions  
- 
- 

A i r f o i l  Sec t ions  With Broad Inc idence  Range 

Vector Diagrams That Main ta in  Good Radia l  Balance of Loading 

2. More Highly Loaded Than T700 Booster  

- Aero Design Challenge 

3. High Tolerance to  Heavy, Unsteady I n l e t  D i s t o r t i o n s  

- High Inhe ren t  S t a l l  Margin 

- Low Aspect Ra t io  Blading 

1 
3 

5 
1 
1 
I 
1 
B 
I 
I 

a 
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Table 4.12-4 below compares the configuration of the T700 versus the M E T  

booster and a 100 hour test program i s  outl ined i n  Table 4.12-5. 

Table 4.12-4. Low Pressure Boosters. 

APET - T7 00 - 

No.  of Stages 

PR 

" T i p 1 6  

rh lr t  

1 

1.38 

1172 

0.737 

2 

1.75 

969 

0.67 

32 7 



Table 4.12-5.  APET Booster Test. 

~ 

100 Hours of Tes t ing  t o  Include: 

1. Performance Mapping 

- Operating and S t a l l  Lines 

- Of f-Design Regimes 

2 .  I n l e t  D i s t o r t i o n  

- Hub and Tip  Radial  

- 1/Rev 

3. Radial  Traversing 

- I n t e r s t a g e  Radial  P r o f i l e s  

4 .  Hardware 

- One Se t  P lus  Spares 

The o v e r a l l  schedule f o r  t h e  proposed boos te r  tes t  program is shown on 

Figure 4 . 1 2 - 2 .  

1985 

Aero Design 

Mechanical Design 

Hardware Procurement 

Instrumentat ion and 
Assembly 

Component Test 

P o s t t e s t  Repor t  

~ 

A 

Figure 4 . 1 2 - 3 .  APET Booster T e s t .  
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4.12.10 Turboprop Controls  

The turboprops i n  se rv i ce  today a l l  use  some ve r s ion  of hydromechanical 

f u e l  flow scheduling and hydromechanical p rope l l e r  p i t ch  change scheduling. 

The f u t u r e  turboprop is almost c e r t a i n l y  going t o  be equipped wi th  a FADEC 

system t h a t  simultaneously c o n t r o l s  both t h e  tu rbosha f t  engine power output  

(and a l l  i t s  v a r i a b l e  geometry f ea tu res )  and t h e  p rope l l e r  system. 

design and development e f f o r t s  w i l l  be required f o r  t h e s e  new c o n t r o l  technol- 

og ie s ,  and i t  is  recommended t h a t  NASA create a sepa ra t e  advanced turboprop 

c o n t r o l  e f f o r t  t o  demonstrate a FADEC system on a turboprop i n  an opera t iona l  

environment. This program should include t h e  design and demonstration of t he  

micro-processor based l o g i c  f o r  t h e  cont ro l ,  coupled wi th  a d i g i t a l  redundant 

output  which communicates with t h e  engine and p rope l l e r  us ing  advanced s igna l -  

ing  techniques.  

t h e  high c r u i s e  speed turboprop a i rp lane .  

Subs tan t i a l  

These technologies  a re  also considered key t o  t h e  success of 

This program is recomended t o  be i d e n t i f i e d  i n  terms of cost and sched- 

(Task VI11 i s  c u r r e n t l y  u l e  when Task VI11 of the APET progrem i s  completed. 

i n  process  of study.) 

change mechanism (PCM) and inc ludes  the concept of c o n t r o l  from a FADEC system. 

Because t h e  modern turboprop engine and p r o p e l l e r  con t ro l  are perceived as 

being commanded and regulated by t h e  same c e n t r a l  processing system, t h e  pro- 

gram w i l l  address  both t h e  engine and p r o p e l l e r  systems. 

Thio task addresses  t h e  design of an advanced p i t c h  

4.12.11 The Propfan Gearbox 

NASA i s  well aware of t h e  c r i t i c a l  n a t u r e  of t h e  gearbox and i s  pursuing, 

through f u r t h e r  study t a s k s ,  d e t a i l  design inves t iga t ions  which w i l l  cover a l l  

t he  a spec t s  required t o  propose an advanced, Lightweight gearbox wi th  r e l i a b i l -  

i t y  i nd ices  f o r  i n  excess of t hose  being c u r r e n t l y  demonstrated i n  se rv i ce .  

These s t u d i e s  mus t  be followed by a hardware development program which 

inc ludes  very s u b s t a n t i a l  resources  for hardware, r i g s  and t e s t i n g .  

of Her tz ian  stress i n  gear  t e e t h  coupled wi th  improved l u b r i c a t i o n  and lub r i -  

c a n t s  must be v e r i f i e d  i n  an o r d e r l y  manner. 

coopera t ive  indus t ry  and NASA programs may provide t h e  b e s t  balance of e f f o r t ,  

and t h e  d e f i n i t i o n  of t h e s e  programs w i l l  be  one of t h e  prime o b j e c t i v e s  of 

APET Task VI1 due t o  be completed by t h e  end of  1984. 

New l e v e l s  

It is  foreseen  t h a t  some major 
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I n  t h e  meantime, t h a t  i s  before  Task V I 1  r epor t  i s  due, a program o u t l i n e  

for a 12,500 SHP turboprop gearbox has  been prepared. 

discussed below. 

This program p lan  i s  
Table 4.12-6 g ives  t h e  o u t l i n e  for t h e  program plan .  

Table 4.12-6. Turboprop Reduction Gearbox 
Development Program. 

Program Leads t o  : 

0 Advanced Technology 

Reduction Gearbox 12,500 hp 

0 Aimed a t  Late 1980's 

The main elements for t h e  proposed program are s ix  i n  number. These a r e  

descr ibed i n  Table 4.12-7. 

Table 4.12-7. Program Elements. 

1. 

2. 

3. 

4. 

5 .  

6. 

Mechanical Design 

System Analysis  

- Vibrat ion 

- Lubr ica t ion  

Procure Hardware 

Outside Contractors  Coordination 

Bearing and Gear Component Tests 

Fu l l  Sca le  Back-to-Back Rig Test 

In  the  mechanical design and system a n a l y s i s  area t h e r e  are e i g h t  sub- 

elements t o  the  program. These a r e  given i n  Table 4.12-8. 
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Table 4.12-8. Mechanical Design and System Analysis. 

Program Elements: 

1. Select Design Configuration 

2. Prepare Detail Drawing 
3. Analysis 

4. OV Coordination 

5 .  Engineering Coverage During Manufacture 

6 .  Component Test Coverage 

7.  F u l l  Scale Test Coverage 

8. Document a t  ion 

Hardware procurment requirements are given i n  Table 4.12-9, and com- 

p r i se  two subelcments. 

Table 4.12-9. Hardware Procurement. 

1. 3 Se ts  + Spares of Gearbox fo r  Ful l  
Scale Back-to-Back Testing 

2. Component Test Bearings and Gears I 
It is possible t h a t  outs ide contractors W i l l  be invited t o  par t i c ipa t e  

i n  ce r t a in  areas of the gearbox des ign  and hardware test e f f o r t  because of 

t h e i r  recognized technical expert ise  i n  spec ia l i s t  areas. 

include the following: 

These areas could 

Possible Outside Contractors 

Mechanical Design and T e s t  Hardware 

0 Dynamic Mount System 

0 Input Drive Shafting 

0 Condition Monitoring (GE?) 
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Included i n  Table 4.12-9 t h e r e  i s  an item which covers  t h e  component 

tests f o r  bearings and gears .  

i n  Table 4.12-10. 

The plan o u t l i n e  for t h e s e  components i s  given 

1. New F a c i l i t y  

2. Minimum Tes t ing  Requirements 

0 I n i t i a l  Assembly and Fina l  Teardown 

0 4 Inspec t ions  

0 Mechanical C/O and T e s t  Plan Test ing 
(100 t o  500 hours)  

I 
I 0 Only Torque Tes t ing ,  No Prop Load Tes t ing  

Table 4.12.10. Bearing and Gear Component Tests. 

1 3. Reporting 

Bearings 

1. P lane t /S ta r  or I d l e r  Bearings 

2. 

3. Equivalent Loading 

4. 
5 .  Determine Heat Rejec t ion  

Include Gear Mesh Separa t ing  Load E f f e c t s  

Determine S t a b i l i t y  a t  Various Cooling Rates 

6. Endurance Test 

Gears 

1. S ing le  Mesh Tes t ing  

2. 

3. Determine Scoring C h a r a c t e r i s t i c s  

4. Determine Heat Rejec t ion  

5. Load Endurance 

Sca le  of T e s t  Gears (To be Determined) 

A f u l l  s ca l e  back-to-back r i g  t es t  is planned f o r  t h e  assembled gearbox. 

Table 4.12-11 h igh l igh t s  t h i s  tes t .  
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The o v e r a l l  timing and key milestone events  are shown i n  Figure 4.12-4. 

Preliminary Design 

Analysis 

Detail Drawing 

Procure Hardware 

OV Contracts 

Component Tests 

Back-to-Back Test8 
- Rig Derign and 

Procur anent 

- Test  

1 

I 

1985 I 1986 

Figure 4.12-4. Turboprop Reduction Gearbox Program. 

4.12.12 

General E l e c t r i c  has i d e n t i f i e d  some novel design approaches which may 

The Propfan P i t c h  Change Mechanism 

o f f e r  s i g n i f i c a n t  improvements i n  terms of r e l i a b i l i t y ,  system s t i f f n e s s ,  and 

b lade  pos i t i on  accuracy. 

w i l l  be addressed by using l e v e l s  of stress t h a t  a r e  conservative fo r  t h e  

materials considered, coupled w i t h  advanced redundant con t ro l  concepts and 

advanced instrumentation which monitors v i t a l  functions as w e l l  as d i agnos t i c  

functions.  Like t h e  gearbox above, the  PCM w i l l  be f u r t h e r  re f ined  i n  N E T  

Task VIII, which w i l l  produce a de t a i l ed  recommendation f o r  f u r t h e r  e f f o r t s  t o  

inc lude  hardware appra i sa l  and development. 

Safety of operation i s  an abso lu te  requirement which 
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4.12.13 APET Combustor 

A technology plan i s  required t o  address  t h e  performance implied i n  t h e  

APET s tudy engines combustors. 

i n  Table 4.12-12. 

The ob jec t ive  and t h e  cha l lenges  are ou t l ined  

Table '4.12-12. APET Combustor Development. 

Object ive - Develop F u l l  Annular Combustor Technology for Advanced Propfan 
Engine Applicat ions.  

Technology Challenge 

1. 

2. 

3. 

4. 

5 .  

20% Reduction i n  Nondimensional Burning Length (1.75 L/HD Versus 
Current Production Designs of 2.2) 

0 Reduced System Weight 

0 Reduce NOx Emissions 

30% Reduction i n  Liner  Cooling Rela t ive  t o  E3. 

0 Advanced Technology Design 

0 Increase Avai lable  A i r  for Aerothermal Mixing 

100% Increase i n  HP Nozzle Leading Edge Back Flow Margin 

0 

0 

ICAO Research Goals f o r  Future  Subsonic Engine Gaseous Emissions* 

Carbon Monoxide 

Increase HP Nozzle Cooling Ef f i c i ency  

Reduce S e n s i t i v i t y  t o  Combustor Thermal Nonuniformity 

- 42.00 grams p e r  Kilonewton Cycle 

Hydrocarbons - 4 .35  

Oxides of Nitrogen - 58.00 

Low V i s i b i i l t y  

Smoke* -20 SAE 
~~ 

*Using "ERBS" F u e l s  
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The development plan inc ludes  a number of subelements which lead t o  a 
f u l l  scale annular  test  program including t h e  d i f f u s e r .  

i n  Table 4.12-13. 

This plan i s  ou t l ined  

P a r a l l e l ,  b u t  I n t e r a c t i v e ,  Component Sector  T e s t  Programs. 

0 

0 

Single  Cup Sec tor  - S w i r l  Cup Development (Atmospheric) 

Five Cup F l a t  Sector  - S t a b i l i t y ,  Temperature P r o f i l e ,  
Primary Zone Stoichiometry,  L iner  Hole Pa t t e rns  
(Atmospheric) 

Location, Subidle  Performance (Sub-Atm * 7 Atm) 
0 Five Cup Annular Sector - I g n i t i o n ,  Emissions, I g n i t o r  

F u l l  Annular Tes t  Program - P r o f i l e ,  P a t t e r n  Fac tor ,  S t a b i l i t y ,  
Emissions, L i f e  (Sub-Atm + 35 Atm) 

F u l l  Annular Di f fuser  Test  Program - Water Table S tudies ,  
Performance, Sens i t  i v i  t y  , S t a b i l i t y  

The o v e r a l l  p l an  inc luding  milestones and events  i s  a s  shown i n  F igure  

4.12-5.  

4 .12.14 P r i o r i t i z e d  Recommendations 

In  order  of p r i o r i t y ,  t h e  recommendations are l i s t e d  below: 

P r i o r i t y  One 

(2)  0 Low pressure  tu rb ine  design/development 

(3 )  0 Booster wi th  VIGV's desigddevelopment 

(2) 0 FADEC c o n t r o l s  design/development 

(1) 0 Propfan gearbox design/development 

( 3 )  0 Propfan PCM desigddevelopment 

( 3 )  0 Combustor design/development 
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- 
m. - 
1. 
2 .  

3 .  
4. 

5. 

6. 

7.  

8. 

9. 

10. 

11. 

12. 

- 

ni les tones / tvents  

P re lL ina ry  Design, Floupath 

Detailed Design, Dar and Liners 
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Figure 4.12-5. Combustor T e s t  Plan.  

The numbers i n  parentheses  are t h e  suggested o rde r  of p r i o r i t y  based on 

t h e  est imated individual  program time span. 

design engineering e f f o r t s  on a l l  f i v e  items be conducted i n  p a r a l l e l .  

It would be recommended t h a t  

P r i o r i t v  Two 

(1) 0 Nacelle placement design studies/Wind Tunnel t e s t i n g  

(2 )  0 Thrust matching design s t u d i e s  

(3) 0 Aeromechanical loads design s t u d i e s  

(4) 0 Nacelle s t r u c t u r e s  design s t u d i e s  

(1) 0 Nacelle aerodynamics Wind Tunnel t e s t i n g  

The numbers i n  parentheses a r e  t h e  suggested order  of p r i o r i t y  based on t h e  

impact t h a t  t h e  ind iv idua l  programs may have on an o v e r a l l  design e f f o r t .  

Also, i t  should be noted t h a t  t h e s e  f i v e  s u b j e c t s  are mostly a i r f rame design 

pr ime areas. 
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4.13 TASK VI1 PMLIMINARY DESIGN OF PROPFAN KEDUCTION GEARBOX 

4.13.1 Summary 

A continued design effort on a propfan reduction gearbox has been made as 

a follow-on to Tasks 111 and IV of Contract NAS3-23044. As a result of con- 

ceptual design studies, two basic designs evolved; an in-line compact design 

and a simple offset configuration. 

These designs were ranked in Task I11 of the above-mentioned conqract and 

were rated approximately equal. 

cost to the U.S. Government) was developing a preliminary design for a novel 

offset gearbox. Because of this activity, GE chose, in-house, to expand upon 

the design of the in-line design so two gearboxes, one of each principal type 

(in-line and offset), would result from Task VII. 

restricted to reporting on the in-line design only. 

The Westland Helicopter Co. (working at no 

This report however is 

4.13.1.1 Objectives 

This. study included the following objectives: 

Identify the specifications judged appropriate for a 1990 IOC (Ini- 
tial Operational Capability) propfan gearbox 

Provide a viable gearbox preliminary design for a 1990's propfan pro- 
pulsion system. The gearbox to include advanced technology systems, 
features, materials. 

Identify the constraints on the gearbox design 

Identify the required technologies 

Identify areas needing technology development 

Quantify the benefits of these advanced technologies 

Provide a Development Plan which will develop these technologies 
for timely introduction into a "product" gearbox. 

Identify other components (gearbox related or gearbox adjacent) 
requiring technology advances or  development. 
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4.13.2 Design C o n s t r a i n t s  

The propfan r educ t ion  gearbox of t he  1990 t i m e  pe r iod  must  have maintain-  

a b i l i t y  and r e l i a b i l i t y  l e v e l s  i n  excess  o f  c u r r e n t  expe r i ence .  T h i s  w i l l  

r e q u i r e  a des ign  f o r  Mean T ime  Between Unscheduled Removals (MTBUK) i n  excess  

of  20,000 hour s .  

i n g  and gea r  l i v e s  i n  o r d e r  t o  achieve  system l i v e s  o f  20,000 hour s .  ~ l s o  

demanded are tha t  i n d i v i d u a l  bear ings  and gear  meshes have l i v e s  i n  excess  of  

100,000 hours  depending on t h e  t o t a l  number o f  bea r ings  i n  t h e  system. 

t h e  des ign  c o n s t r a i n t  i s  t o  keep t h e  k inemat i c s  s imple and t h e  number of 

f a t i g u e  prone components t o  a minimum. 

Th i s  then i n  t u r n  w i l l  r e q u i r e  des ign ing  f o r  v e r y  h igh  bear- 

Thus 

Also important a r e  i n t e r f a c e s  of  t h e  P i t c h  Change Mechanism (PCM) and t h e  

Transfer  of e l e c t r i c  o r  h y d r a u l i c  power t o  t h e  mechanism and access  gearbox. 

f o r  s e r v i c i n g  a l s o  c o n s t r a i n s  t h e  gearbox des ign .  

To achieve  favorable  weight f a c t o r s  the des ign  should inc lude  i n t e g r a t i n g  

f e a t u r e s  which have i n  t h e  p a s t  been s e p a r a t e ,  such as lube  o i l  c o o l e r s  and t h e  

o i l  r e s e r v o i r .  Thus t h e  packaging of  t h e  g e a r i n g  arrangement i n t o  a mul t i func-  

t i o n a l  housing becomes an important  a s p e c t  of  t h e  s e l e c t e d  des ign .  

The gearbox t h a t  i s  be ing  r e p o r t e d  w a s  p r e l i m i n a r i l y  des igned  t o  m e e t  t he  

fo l lowing  c r i t e r i a :  

0 Compat ib i l i ty  wi th  t h e  a i r c r a f t ,  engine ,  and miss ion  developed i n  
Tasks I through I V .  

0 Mean t i m e  between unscheduled removals (MTBUR) i n  excess  of  20,UOU 
hours  

0 I n t e g r a t e  a l l  t h e  gearbox suppor t  systems i n t o  t h e  b a s i c  gearbox; i . e .  
no systems t o  be remote from t h e  gearbox. 

0 Keep accessory d r i v e  systems s e p a r a t e  from t h e  b a s i c  gearbox. 

4.13.3 Trade S t u d i e s  

Con f i g u r a  t ion 

I n i t i a l l y  t h e  c o n f i g u r a t i o n  of  a l l  gearboxes t h a t  had e v e r  flown ( a s  

determined from the  h i s t o r i c a l  survey)  were considered as i n i t i a l  candida tes  
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along with other configurations that were thought to have possible potential. 
This rather large field of candidates was narrowed to seven final candidates. 
As a part of Tasks I1 and I11 conceptual designs were made of these candidates 

prior to judging them on the following properties: 

0 Weight 
0 cost 
0 Technical risk 
0 Development requirements 
0 Build where possible from an established data base 
0 

0 

Capability of achieving life and maintainability goals 
Installation consideration including dynamic mountings 

The two leading candidates, which were virtually tied for first place, were 
an in-line compound star configuration and an offset double branch double 
reduction configuration. 

reported in Section 4.6 of this report. 
The details of this configuration comparison are 

With the approval of NASA, Task VI1 was contracted to explore further the 
preliminary design of an in-line compound star configu'ration. 
rate issue General Electric Company continued with an advanced offset con- 
figuration,-using novel gearing designs. 
of the NASA-funded contract and therefore is not reported herein. 

Also as a sepa- 

This work was not performed as part 

4.13.4 Design Criteria 

The design criteria established for the in-line design included the follow- 
ing considerations: 

A design that was established from the mission profile shown in Fig- 
ure 4.6-5. 
Power for bearing system lives. 

A maximum power capability of 12,500 tip at takeoff. This was a "nom- 
inal" power selection and is -applied to the propfan driveshaft. 

An overall gear ratio of 7 . 4 : l  + 0.1 

A system life in excess of 20,000 hours. 

Compatibility with an advanced PCM to be conceptually designed in 
Task VI11 of this study. This gearbox must include the source of 

This mission profile was used to establish the Cubic Xean 

- 
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hydraulic .or electric power and any lubrication requirements for the 
total propfan system. 

0 Simple kinematic arrangement leading to a l o w  parts count thus enhan- 
cing maintainability, reliability and DOC. 

0 Use of advanced concepts to help achieve any of the above criteria. 

4.13.5 General Arrangements (Current and Advanced) 

4.13.5.1 Current 

The baseline gearbox design, which is used for the purpose of determining 

the worth of the'advanced technology features, is shown earlier in this report 
as Figure 4.6-13. 

three branches and is the in-line having the highest rating in the trade study 
discussed in Task 4.6 of this report. 

This design is an in-line compound star configuration having 

Desirable attributes of this design are: 

0 Simple compact kinematic arrangement. 

0 Propfan shaft bearing span consistent with long bearing life. 
bearing ismounted in the star gear carrier. 

Floating ring and sun gear for gear tooth load sharing. 

High speed drives for the Pitch Change Mechanism (PCH) and the auxil- 
iary drive for the accessories. 

Aft 

0 

0 

4.13.5.2 Advanced 

Task V I I ,  with the approval of NASA, took the configuration shown in Fig- 
ure 4.6-13 and incorporated into it advanced features. 

ration, shown in Figure 4.13-1, is also an in-line star configuration, which is 
an evolution of the current design. 
for the same reasons. 

The advanced configu- 

The configuration choice remains the same 

. The general arrangement of the advanced gearbox designed under this task 
is shown in Figure 4.13-1. 
input pinion gear which then drives four double idler gears. These four gears 

engage a 91-tooth internal gear for a total gear ratio of 7.307b:l. 
gear is splined to the output shaft to provide flexibility and the output shaft 

bearing system consists of a ball and roller bearing mounted in the forward 

For this arrangement engine,power drives a 30-tooth 

- 
The ring 
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housing and a roller bearing mounted in the star-gear carrier. The carrier is I 
1 a stiff, two piece design to allow for assembly of the internal gear past the 

forward support bearings of the four idlers. 
a welded design with the weld located in the web of the 53 tooth gear. The 

differences between the gearboxes of Figure 4.6-13 and Figure 4.13-1 are: 

The 22/53 tooth star gears are of 

0 

0 

0 .  

0 

0 

0 

0 

0 

0 

The 

Slight ratio modification which enables the use of four (instead of 
three branches) with a resulting improvement,in weight and volume. 

Use of bulk oil temperatures approximately 100' F higher than per- 
mitted by current technology. A reduction in size of both the lube 
system and heat exchanger is then a direct result. 

Use of a titanium alloy rather than a light alloy housing. 
change is partly necessitated by the higher operating temperature, 
but there.are other benefits as well from this change that are dis- 
cussed in Section 4 . 1 3 . 7 . 9 ,  later in this report. 

This 

Anticipated improvements in Multiplying Factors for bearings. These 
improvements will occur as experience continues to mount on the high 
bypass ratio fan engines. 

A modulated lube system oil flow rate for improved efficiency at 
cruise power settings. 

Ability to exploit more fully the properties of advanced gear mate- 
rials (higher hot hardness) as a result.of the elevated operating 
temperature. 

Incorporation of an oil tank as part of the gearbox housing. 
has advantages of increased reliability as well as saving weight. 

This 

Incorporation of a heat exchanger as part of the gearbox. This saves 
weight, increases reliability, as a result of fewer fluid lines and 
connections, and possesses installation advantages. It also ensures 
that new production gearboxes can be factory "system" tested, and 
flushed for cleanliness before being installed as part of the overall 
propulsion system. 

Incorporation of finer filtration to improve bearing. and gear wear. 

gear configuration is a compound star layout, which means that the 

I 
I 
I 

I 
1 
I 
I 
I 
c 
I 

a 

star pinions are stepped, each containing two gears. The star pinions also 

serve as convenient locations from which accessory power can be extracted. The 

twin lube and scavenge pumps are driven from the two lower star pinions. 

sun gear meshes with the larger diameter gear on each pinion, with the ring 

I 
I 
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gea r  meshing wi th  t h e  o t h e r ,  or smaller, gea r .  

advantages of t he  s imple s t a r  conf igura t ion  (which has  unstepped, o r  s i n g l e  

p i n i o n s )  but  g r e a t l y  inc reases  the  r a t i o  c a p a b i l i t y  a t  which the  gearbox can 

s t i l l  be  ve ry  compet i t ive  i n  weight.  

t h i s  c o n f i g u r a t i o n  and t h i s  p l u s  the  f a c t  t h a t  t h e  t a n g e n t i a l  f o r c e s  a t  t he  

inpu t  and output  of the  p in ion  do not l i e  i n  t h e  same plane  g i v e  r ise  t o  a cou- 

p l e  t h a t  tends t o  skew t h e  c e n t e r l i n e .  This  tendency p l aces  a d d i t i o n a l  impor- 

t a n c e  on the r i g i d i t y  of t h e  s t a r  gear suppor t  such t h a t  changes i n  d e f l e c t i o n s  

as t h e  load goes from zero ,  o r  even negat ive ,  t o  f u l l  load,  do not  unacceptably 

change the  meshing con tac t  p a t t e r n .  In  o r d e r  t o  meet t h e s e  demanding des ign  

c o n s i d e r a t i o n s ,  t h e  use of a f ab r i ca t ed  (welded) t i t an ium s h e l l  and support  

members are h igh ly  b e n e f i c i a l .  Fabricated assemblies ,  when analyzed with the  

l a t e s t  F i n i t e  Element A n a l y t i c a l  techniques,  can much more e a s i l y  be designed 

f o r  s t i f f n e s s  i n  t h e  r i g h t  p l aces  than can a monol i th ic  cons t an t  s h e l l  th ick-  

n e s s  alumintun c a s t i n g .  The housing of t h i s  gearbox i s  t h e r e f o r e  an advancement 

i n  t h a t  i t  is a titanium weldment r a t h e r  t han  t h e  more convent ional  l i g h t  a l l o y  

c a s t i n g .  Additional unique fea tures ’  are that t h e  gearbox inco rpora t e s  a b u i l t -  

i n  o i l  tank  and h e a t  exchanger. Mounting p rov i s ions  t o  absorb t h r u s t ,  r o l l ,  

( t o r q u e  reaction), and vertical and s i d e  loads  are included a t  four  l o c a t i o n s  

on t h e  o u t s i d e  of  t h e  housing i n  the  p l ane  of i t s  l a r g e s t  d iameter .  

Th i s  arrangement preserve  the  

The p in ions  are, of course  much longer  i n  

Because of  t he  unique design f e a t u r e s  of  t he  e l e c t r i c  p i t c h  change which 

is  mated wi th  t h e  gearbox i n  t h i s  study, minimum demands are p laced  upon the  

gearbox i n s o f a r  as accommodating propfan p i t c h  change system requirements .  

gearbox, however, does supply energy wi th in  the  propfan hub v i a  a high speed 

c e n t r a l  s h a f t  which is coax ia l  with the  output  d r i v e  s h a f t .  Approximately 30 

horsepower maximum i s  t r ansmi t t ed ,  and t h i s  i s  used by the  p r o p e l l e r  assembly 

f o r :  

The 

0 Powering t h e  b lade  p i t c h  change a c t u a t o r .  

0 Provid ing  power t o  de-ice the  b l ades  and sp inne r  s h e l l .  

0 Powering t h e  on-board e l e c t r o n i c  c o n t r o l .  

0 Powering, when necessary ,  t h e  fo l lowing  p i t c h  lock t o  prevent  a lock 
up s i t u a t i o n  and permi t t ing  au tho r i zed  b lade  movement toward f i n e  
p i t c h .  
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Additionally, a low pressure (50-60 psig), low flow hydraulic slipring is pro- 

vided within the SDG (Speed Decreaser Gearbox) to supply cool, filtered oil to 

channels within the high speed central shaft. This oil is used: 

0 To lubricate the alternator bearings and speed increaser device. 

0 To cool both the alternator and motor. 
0 To activate the emergency feather clutch, if necessary. 

Because of the low pressure, this slipring is not a demanding design and it can 

be of small diameter as the flow is low. Zero leakage performance of this 

slipring is not a requirement as the location within the oil-wetted interior of 
the gearbox makes the slipring extremely leak-tolerant. Reliable delivery of 

the required flow is the only necessary condition. 

4.13.6 Accessories 

Removal of an accessory drive section from the propfan speed reducing 
gearbox greatly simplifies the SDG and eases the task of attaining the reli- 

ability goal. 
mounted accessory drive system (AMADS). The AMAD system is powered by a single 
high speed power extraction pad on the SDG. This pad is shown on Figure 4.13-1 
and is virtually identical with that also shown on the three branch SDG of Fig- 

ure 4.6-13. 

The accessory drives are envisaged as being on an aircraft 

The maximum rating of this power extraction pad is nominally: 

400 horsepower (at) 
20,000 RPM 

These values are believed to be more than adequate for the A M O S .  

This AMADS drive consists of a high speed bevel gear drive providing a 45' 
power takeoff (PTO). The airframe required accessories, including the propfan 

brake would be on this remote gearbox. The design of this gearbox was not 
undertaken as part of this study. The-F'TO bevel gears from the main reduction 

gearbox were designed for 400 hp which is judged to be consistent with the air- 
frame requirements for the 1990 time period. Current gear design stress levels 
were used for this bevel gear mesh. 
pression stresses of 156.6 ksi were considered suitable for this design and are 
within the state of the art. 

Bending stresses of 2 7 . 9  ksi and com- 

Bearing lives over 20,000 hours were calculated. 
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As w i l l  be discussed i n  l a t e r  sec t ions  t h i s  gear  t r a i n  opera tes  a t  100' F 

h igher  temperatures than cur ren t  technology. The gears  would use the  same 

m a t e r i a l  a s  the  main reduct ion gears  and the  bear ings would be M5U o r  M50NIL. 

This pad i s  loca ted  a t  the lower r e a r  of the  SDG and a typ ica l  connection 

t o  an AMADS i s  shown by the  i n s t a l l a t i o n  of Figure 4.7-9. The major i ty  of the  

d r i v e  components a r e  on a s i n g l e  removable module t h a t  conta ins  the  s h a f t ,  

bea r ings ,  o i l  s e a l s ,  s p l i n e ,  and gear. Only the  mating gear cannot be  removed 

without  an SDG disasembly. 

Mounted to  the  a f t  s i d e  of t he  main reduct ion gearbox a r e  two lube and 

scavenge pumps. Two a r e  provided for  redundancy cons i s t en t  w i t h  he l i cop te r  

experience and these are mounted d i r e c t l y  t o  t h e  ma in  housing t o  f a c i l i t a t e  

i n t e r n a l  p o r t i n g  and lube t r a n s f e r  t o  e l imina te  any need f o r  e x t e r n a l  l i n e s .  

An i n t e r n a l  d r ive  has  been provided f o r  t he  P i t c h  Change Mechanism (PCd) .  

The PCM intended f o r  use with t h i s  reduct ion gearbox i s  the  e l e c t r i c  system 

descr ibed  i n  Task VIII. 
e rnor  or control powered by t h e  reduct ion gearbox, so none is provided. 

This PCM does not  r equ i r e  a conventional speed gov- 

4.13.7 

The d e t a i l e d  d iscuss ion  of the  main reduct ion gearbox covers the  following 

Main Reduction Gearbox Prel iminary Design D e t a i l s  

Configuration. 

The kinematic arrangement with a four-stage design compared t o  a 
three-star conf igura t ion .  

The gear  design and c e r t a i n  advanced concepts.  

The bear ing arrangement and bear ing c r i t e r i a .  

Lubricat ion system. 

Heat generat ion and e f f i c i ency .  

R e l i a b i l i t y .  

Gearbox housing design. 

Gearbox/Propfan in t e r f aces .  
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Engineltiearbox interfaces. 

Gearbox Physical Description. 

Maintenance. 

Gearbox weights. 

costs. 

4.13.7.1 Configuration 

The configuration chosen, that of a compound star gear, possesses many 

desirable attributes for this application which caused it to be the preferred 
selection. The principal advantages of the compound star are: 

Elimination of planet bearings operating in a high "G" field 

Favorable score in the trade study 

Compound configuration has the efficiency of a single stage simple 
star with the ratio capability of a two-stage star system 

Produces an in-line SDG, which is desired, as the alternative SDG 
designed was an offset configuration. 

Simpler design with projected lower development costs than an equiva- 
lent planetary sys tem 

Configuration easily accommodates both a high speed shaft coupled to 
the bore of the sun gear, which powers the PIX, and an oil transfer 
bearing for lube and cooling flow to the PCt4 

Earlier generation turboprops required an SDG with a much higher 
numerical ratio (see Section 4.6.2.1 for this summary). A requirement 
for a much higher ratio than that required by current propfan techno- 
logy would make the single-stage compound star gear arrangement much 
less competitive. 

4.13.7.2 Kinematic Arraneement 

A compound star arrangement is basically simple kinematically but there 
are certain considerations which require attention. These include the selec- 

tion of the.number of stars, after which the selection of teeth numbers must be 

made. 
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The "current  technology" in- l ine design u t i l i z e d  a th ree  star arrangement. 

During Task V I I ,  e f f o r t s  were made to reduce the  size/weight of t he  gearbox by 

adding one more s t a r  gear t o  produce a reduct ion of the  o v e r a l l  s i z e  and weight. 

A s tudy  of the  gear  ratio of t he  f i r s t  and second s t age  of gear ing  was made t o  

d e f i n e  r a t i o s  t h a t  would al low an addi t iona l  s t a r  and a l s o  provide adequate 

m a t e r i a l  between the  s t a r s  f o r  the  c a r r i e r  support  s t r u c t u r e .  

Also very important i s  the  proper s e l e c t i o n  of the ind iv idua l  gear t e e t h  

numbers. A computer program w a s  used t o  consider the  following c r i t e r i a :  

0 Assembly with four  branches 

0 "Hunting" too th  ac t ion  

0 Non f a c t o r i z i n g  with number of  s tages  

For a fou r - s t a r  arrangement, a gear  r a t i o  range and gear mesh tooth numbers 

were s tud ied  and poss ib l e  combinations meeting t h e  above c r i t e r i a  were calcu- 

l a t e d .  

design.  

Table 4.13-1 shows the  f i n a l  s e l e c t i o n  made compared t o  the 3-star 

Table  4.13-1. Comparison of Three t o  a Four S t a r  Kinematic Arrangement. 

I 4 S t a r  

Stage 1 

Pinion 
Gear 

Stage 2 

Pinion 
Gear 

30 
53 

22 
91 

3 S tar  

33 
66 

24 
87 

Notice t h a t  the 3-star arrangement did not meet "hunting" too th  ac t ion  i n  

S tage  1, b u t  the same computer techniques could have been a p p l i e d  t o  t h i s  

arrangement. 

would be unaffected.  

allow more material between the  gears i n  the  s t r u c t u r e .  

The t e e t h  number would have va r i ed  s l i g h t l y  but  t he  bas i c  s i z i n g  

The gear  r a t i o  of the  f i r s t  s t age  was reduced by 13% t o  

349 



The f i n a l  gear  r a t i o  s e l e c t e d  w a s  7.3076:l which meets turbomachinery and 

propfan speed matching requirements .  

4.13.7.3 Gears 

Various gear t o o t h  geometr ies  were s t u d i e d  du r ing  t h e  p re l imina ry  des ign  

of t h e  reduct ion  gearbox. The fol lowing geometr ies  considered:  

Spur v e r s u s  h e l i c a l  gears  

0 High p r o f i l e  con tac t  r a t i o  gea r ing  

Spur versus  H e l i c a l  

Although h e l i c a l  gea r s  do o f f e r  d e s i r a b l e  c h a r a c t e r i s t i c s  such as h ighe r  

e f f i c i e n c y ,  qu ie t  ope ra t ion ,  and h i g h e r  load c a p a c i t y  (as can be seen  i n  Fig- 

u r e s  4.13-2 and 4.13-31, a x i a l  loads genera ted  i n  t h e  mesh must be r eac t ed .  

The a x i a l  load from t h e  output  r i n g  gear  can be r eac t ed  by t h e  b a l l  t h r u s t  

bea r ing ,  and the a x i a l  loads i n  t h e  star gear  can be balanced by c a r e f u l  s e l ec -  

t i o n  of t h e ' h e l i x  ang le  i n  each g e a r ,  bu t  t o  react t h e  t h r u s t  load from t h e  

inpu t  sun g e a r ,  a l a r g e  h igh  speed t h r u s t  bea r ing  must be used. 

made, i t  was decided t o  u s e  "zero" h e l i x  ang le  gea r ing  t o  e l i m i n a t e  the  need 

f o r  t h i s  bear ing .  It would be p o s s i b l e  t o  r e a c t  t h e  a x i a l  load by t h e  engine 

Low Pres su re  (LP) t u r b i n e  but  t h i s  would in t roduce  d i f f i c u l t i e s  because of t h e  

connect ing s h a f t i n g  arrangement between t h e  gearbox and t h e  engine .  The engine 

LP t u r b i n e  i s  t h r u s t  r eac t ed  a t  t h e  rear of t h e  APET t u r b o s h a f t  engine.  

From a study 

An a d d i t i o n a l  problem wi th  t h e  t h r u s t  load produced by h e l i c a l  gear ing  

when i d l e r  gears ,  such a s  the  s ta r  gears  i n  t h i s  SDG, are  used i s  t h a t  t h e  

t h r u s t  loads  a t  t h e  input  and output  meshes of  t h e  i d l e r  are i n  oppos i t e  

d i r e c t i o n s .  This s i t u a t i o n  g ives  rise t o  a couple ,  which must be r eac t ed  by 

t h e  i d l e r  ( o r  s t a r ,  i n  t h i s  ca se )  gear  bear ings .  Because of t h e  c r i t i c a l  design 

problem of these  bear ings ,  any des ign  which in t roduces  a d d i t i o n a l  bear ing loads 

w a s  avoided. 

Tooth Form 

Table  4.13-2 shows a summary of  t he  gea r  des ign  d a t a .  The s e l e c t i o n  of 

gear  t oo th  p i t c h  has  been such as t o  a l low margin i n  t h e  bending stress ( t o o t h  
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breakage criteria); compressive stress is being used as the design limit 

although scoring will need further investigation to ascertain whether it may 

in fact be the actual limiting criteria. 

Table 4.13-2. Gear Data, HP = 12,500, Total Gear Ratio = 7.3:l. 

0 

0 

0 

0 

*. 
** 0 

0 

0 

0 

No. Teeth 

- Pinion - Gear 
Diametral Pitch P 
Pressure Angle (deg) 
Face Width F (in) 
K Factor (lb/ino) 
Compressive Stress (ksi) 
Unit Load UL (lb/in) 
Bending Stress (ksi) 
Temperature Rise ( *  F) 

**UL = - WT X P  
F 

WT = Tangential Driving Load 

~- 

Stage 1 

30 
53 

5.00 
22.5 
2.35 
860 
163 

16510 
37.2 
118 

Stage 2 

High profile contact ratio gearing could increase the Hertzian stress 

capability of the gear set by approximately 30%. 

been used very successfully by GE on the NASA QCSEE engine but it is sensitive 

to load sharing between teeth since the bending stress capability of individual 

teeth is less than that of standard teeth (see Reference 43). 

This type of gearing has 

A study was made to ascertain the benefit (if any) of the use of high con- 

For this specific instance the benefit 

The incorporation of high contact ratio gearing would also 

tact ratio gearing in this application. 

is not significant. 

impose an efficiency penalty of approximately 0.3%; which would disadvantage 
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22 
91 

4.15 
22.5 
3.00 
742 
162 

2 1500 
48.4 
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the system. Although it is recognized that high contact ratio gearing can be a 
worthwhile feature for some designs, in this particular SDG it was not assessed 

to have sufficient advantage to warrant further consideration for the detail 

design. 

4.13.7.3.1 Gear Stress Analysis 

Stress analysis was performed utilizing American Gear Manufacturing Asso- 

ciation Standards (AGMA) 210.02, 220.2 and 217.01. A computer program devel- 

oped at General Electric, which includes AGMA design equations, was used in the 

analysis. 

design horsepower of 12,500. 

The calculated stresses are shown in Table 4.13-3 for the output 

r 

Stage 1 

Diametrical Pitch 5.0 

Face Width (in) 2.35 

Bending Stress (ksi) 37.2 
Mesh Temperature Rise ( *  F) 118 

Preaaure Angle (degrees. 22.5 

Compressive Stress (ksi) 163 

Table 4.13-3. Calculated. Gear Parameters. 

Stage 2 

4.15 

3.00 
122 

69 

22.5 

48.4 

Compressive Stress (ksi) 
Bending Stress (ksi) 
Scoring Flash Temp.(' F) 
Max. Operations Temp.(* F) 

4.13.7.3.2 Gear Materials 

~ ~~ 

Current (AMs 6265 1 Advanced 

165 
60 

350 450 

135-151 
40-50 

275 (Low Risk) Testing Required 

For a gearbox of the 1990's it is anticipated that the design allowables 

must be improved. 
4.13-4 

Design allowables for an advanced gearbox are shown in Table 

Table 4.13-4. Gear Design Allowables, Current Versus Advanced. 

As can be seen, these are extensions over current practice. 

the use of these higher values are: 

Justification for 
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0 More precise determination of material allowables (both bending and 
compressive). 

0 Improved lubricant (compressive, scoring). 

0 

0 

Change in gear material (compressive & bending). 

Better control over bearing center distance variations by thermal 
management. 

Some experimental data on CBS600, Vasco-X2 Modified and Cartech EX-53 have 

indicated improvements in load capacities over the present capability of AMs6265 
although all experimental data does not substantiate the higher capability of 
VASCO-XZ Modified (Reference 35). Reference 36 indicates a bending stress 
improvement of approximately 20X for Vasco-X2; another source, Reference 37 

indicates an improvement of about 25% in compressive stress capability when 
compared to AMS6265. 
mine its relationship to AMs6265 since Reference 38 indicates no basic dif- 
ference in compressive stress capability. 
at NASA Lewis indicates this material shows a life improvement when compared to 
AMs6265 material. 

Additional evaluation of CBS600 will be needed to deter- 

Unreported testing of Cartech EX-53 

Another material being developed by the General Electric Company under Air 
Force Contract is a modified M50 material. These modifications allow this nor- 

mally through hardened material to be case hardened for improved fracture 
toughness. 

bearings and would certainly be a candidate for a high temperature gear mate- 
rial. Gear testing must be accomplished to confirm its suitability as a gear 

material. 

This material has been successfully tested for turbine mainshaft 

All of these materials have higher tempering temperatures which should 

move the threshold at which scoring occurs upwards from AMS6265. The flash 
temperature capability would have to be determined by component testing. 

4.13.7.3.3 Gear Scoring 

Gear scoring, especially when operating at the elevated temperatures pro- 

posed for this design needs further investigation. Scoring thresholds are 
dependent not only on the gear tooth meshing geometry but also mesh sliding 
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v e l o c i t i e s ,  and t h e  compat ib i l i ty  of the lub r i can t  and the  gear  material. An 
improvement i n  l i f e  is fo recas t  i f  t h e  gear  too th  f lank  su r face  f i n i s h  is 

improved from the  cur ren t  s tandard combined with an o v e r a l l  improvement i n  f i l -  

t r a t i o n  of the lub r i can t .  A 5 micron abso lu te  system f i l t r a t i o n  l e v e l  would be 

s e l e c t e d  f o r  t he  advanced gearbox, for both bear ing and gear l i f e  improvement 

ob jec t ives .  

4.13.7.3.4 Load Sharing Provis ions 

When c a l c u l a t i n g  gear-mesh s t r e s s e s ,  load shar ing  must  be considered. 

Some des igns  are dera ted  t o  account f o r  t h i s  bu t  f o r  the  proposed gearbox i t  

w i l l  be accounted f o r  by c a r e f u l  a t t e n t i o n  t o  d e t a i l  design. 

, Three p r i n c i p a l  areas i n  t h i s  SDG bear  t h e  r e s p o n s i b i l i t y  f o r  assur ing  

t h a t  t h e  torque i s  appropr ia te ly  shared by t h e  four  branches. They are: 

0 Prec i s ion  and Tolerancing: 
design, carries two gears. 
t o  the other. A second cr i t ical  area is  the  r e l a t i v e  accuracy of 
location of the centers of r o t a t i o n  of the  s tar  p in ions .  

Each star p in ion ,  because of t he  compound 
These gears  must be timed, one r e l a t i v e  

0 Mesh Centered Sun Gear: 
but  is instead f r e e  t o  be  mesh centered by t h e  four  mating star pin- 
ions.  The cen te r  d i s t ance  of each meshing p a i r  (with the  sun gear  
always being one gear  of  t h e  "pair") w i l l  be what i s  required f o r  
equal  load shar ing .  Four pinions i s  t h e  maximum number t h a t  can be 
used and s t i l l  allow t h i s  mechanism t o  perform a t  maximum e f f e c t i v e -  
ness, although t h i s  is s t i l l  a v i a b l e  concept with a g r e a t e r  number 
of pinions.  

The sun p in ion  is  not  cons t ra ined  r a d i a l l y  

0 Flex ib le  Ring Gear: 
s t r u c t u r e ,  but i n s t ead  is a compliant band. 
a t tached  t o  the  SDG output s h a f t  by a f l e x i b l e  coupling t h a t  allows 
both r a d i a l  misalignment as wel l  as a devia t ion  from pe r fec t  round- 
ness  of the  r ing .  This coupling i s  shown i n  Figure 4.13-1. As a 
r e s u l t ,  each segment of the r i n g  t h a t  is i n  contac t  with i t s  mating 
s tar  p in ion  at any i n s t a n t  may be thought of a s  being "mesh located" 
i n  a fashion s i m i l a r  t o  tha t  of t h e  sun gear .  

The r ing gear  i s  not designed t o  be a r i g i d  
In  add i t ion ,  the  r i n g  i s  

4.13.7.4 Bearing Design 

Shown i n  Figure 4.13-4 is a summation of the  bear ing c h a r a c t e r i s t i c s ,  

loads and Lives. 

t y p i c a l  mission p r o f i l e  shown i n  Figure 4.13-5. 

The bear ing Cubic Mean Loads (CML) were ca l cu la t ed  from a 

With a maximum power l e v e l  of 
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, 

12,500 hp the  calculated cubic mean power is 6885 hp. 

l i f e  is 35,700 h r s  which i s  i n  excess of the  goal f o r  t he  next generation of 

turboprop reduction gearboxes. 

computer analysis  of the bearing react ions of the  star gear. 

The r e s u l t a n t  system 

Figure 4.13-6 shows the output from the 

100 

Power 
HP 

40 

20 

Figure 4.13-4. Bearing Load and L i fe  Summary. 

Appmach/Landing 

0 20 80 100 

Mission Time - O/O Total Time 

Figure 4.13-5. Typical APET Mission P r o f i l e .  
8 
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Gear Fwca 

Gear M d l  Axial Radial Tang 

1 1 0. 3111.46 9537.75 
2 1 0. 1625.67 4466.50 

FR 

Beadn~ F o m r  
B..rlng Fx cy n F n d  Ang 

1 0. 7155.6 1744.9 7365.3 193.7 
' 2 0. 6846.7 100.9 6849.4 180.8 

Figure 4.13-6. Star Gear Forces and Bearing Reactions. 
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System life is calculated using the expression 

n 
' -lIf3 

L = b-f3+ L - 0  + . . 
SY S 1 2 

L LlO of individual bearing using cubic mean power. 

13 = Weibull slope constant of 1 . 5  which is consistent with General 
Electric engine experience 

where Ln represents the L10 lives of individual bearings. 

ings can greatly affect the system life and individual bearing lives must be 

high to achieve the desired overall life. 

The number of bear- 

Fatigue type failures are only one of the modes of distress for antifric- 

tion bearings. Other important considerations are: 

0 Race rotation which leads to excessive clearance between the bearing 
and the gearshaft causing gear misalignment and premature failure. 

Cage failure which creates a vibration and secondary damage to sur- 
rounding hardware. 

Contamination scratches leading to earlier than anticipated fatigue 
failures. 

0 

0 

0 Material subsurface defects that are undetermined by nondestructive 
inspections. 

Race rotation is controlled by maintaining tight fits throughout the ope- 

rating range, and the gearbox requires a detailed thermal analysis with speeds 
and initial shaft fitups to determine the operating fits of bearings on their 

respective shafts. 
clamped with a highly torqued nut, and if the inner ring can be eliminated this 
should be done. 

As shown in Figure 4.13-1 each bearing inner ring is 

The bearing outer races are all bolted in place. 

Cage failure is minimized by careful attention to design details such as 

materials, coatings, pocket fitup and clearances to adjacent rings. 

Contamination damage is greatly reduced by initially providing a clean 

lubrication circuit and maintaining it during operation. 
low micron absolute filtration system, assembly clean room procedures, and 

elimination of external lubrication circuits all contribute to the improvement 
in reliability of this design. 

3 58 

The inclusion of a 



4.13.7.5 Lubrication System Design 

The lube system schematic is shown in Figure 4.13-7. Major features of 

the lube system are: 

0 A lube tank integral with the forward support housing. 

0 Dual supply and scavenge pumps for redundancy. 

0 Separate lube subsystem fo r  the PCM to provide oil which is cooler 
than that supplied to the main reduction gearbox. 

0 Modulating flow valve to vary the main gearbox flow rate proportional 
to torque demand. 

0 Elimination of most external lines. 

0 Revised oil chemistry to provide high load carrying and temperature 
and the selection of a high temperature capability oil. 

0 Improved filtration. 

0 Clean room assembly and test. 

An important consideration in the development of the next generation of 
turboprop reduction gearboxes will be the lubricant evaluation and selection. 

The use of present light viscosity turbine engine oils (Mil-L-7808 or 23699) 
unnecessarily penalize the design objectives of a lightweight, efficient and 

highly reliable gearbox. The proposed gearbox lube system would be totally 
separate from the engine system. 

follows : 

The lubricant requirements proposed are as 

0 300' F Oil supply temperatures 

0 450' F Gear blank temperatures 

0 -20' F Cold starting temperatures * 
0 165 ksi Allowable compressive stress 

* Cold starting below -20' F would be facilitated by using the built-in elec- 

tric heater before engine start to bring the gearbox oil temperature up to the 

-20' level. 

Some preliminary studies indicate a Synthetic Hydrocarbon, Diester oil 

(for example, Emgard EP75W-90) optimized for 300' - 350' F would generate 
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adequate specific film thickness parameters to support the gear loads through 

the operating range. 

bearings remains to be accomplished. 

Extensive evaluation work in regard to both gears and 

4.13.7.6 Heat Generation and Efficiency 

The principal features of this reduction gearbox design that promote high 

efficiency are: 

Single Stage Design: The choice of a compound star configuration allows 

the demanded ratio to be achieved by a single stage while still permitting the 

geometry to remain in a weight-advantaged range. 

design would have necessitated two stages of reduction, with essentially twice 

the losses, or if a single stage design were executed, it would be severely 
weight disadvantaged. 

stage, the star pinions would be very large compared to the sun pinion. 

would restrict the number of branches that could be incorporated, thus impact- 

ing the weight. 

a star system on weight factor. 

The choice of a simple star 

In order to accomplish the required ratio in a single 
This 

Figure 4.6-2 in Section.4.6.1.3 shows the effect of ratio of 

Use of Spur Gears: Had high contact ratio gearing been employed, the 

meshing losses would increase, as the efficiency of this type is somewhat lower. 

Lubrication System Features: The use of an elevated oil operating temper- 
ature (approximately 100' F higher than the current level permits a greater 
differential temperature (oil in to oil out). 

due to gearabox losses to be picked up by a smaller quantity of oil. 

oil flow also results in reduced churning losses, and a lightweight heat 

exchanger. 

This enables the heat generated 

Reduced 

In addition, an oil flow modulating system is included. Only when ope- 

At reduced torque rating at peak torque levels is maximum oil flow provided. 

levels the flow is reduced proportionately, which further aids in the reduction 

of churning losses. 

tial temperature, thus the system functions with a nearly constant differential 

temperature even though the power transmitted (and hence the losses) varies 

throughout the mission. 

The oil flow is modulated as a function of oil differen- 
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4.13.7.7 Reliability 

For economic reasons it is clear that in order to achieve conunercial 
acceptance, a modern propfan gearbox must exibit levels of reliability more 

than twice that demonstrated by previous turboprop gearboxes. The goal set for 

this study is a MTBUR (mean time between unscheduled removals) in excess of 

20,000 hours. 

The approaches taken in this study to achieve a high reliability goal are 

as follows: 

362 

Bearing system life is compatible with the gearbox MTBUR goal. 
bearing lives are shown by Figure 4.13-4. 

The 

Elimination of all functions from the reduction gearbox which are not 
related to the primary job of driving the propfan and the PCM. 
one exception is a power takeoff to drive the AMADS. 

The 

Choice of a single-stage design with its attendant simplicity and low 
parts count. 

Choice of a star design instead of a planetary configuration. 
problems of planet bearings operating in a high G-field are thus 
avoided. The problems of jetting oil to planet pinions are also cir- 
cumvented, as moving jets mounted onboard the planet carrier are not 
necessary. In summary, the inherent simplicity, as compared to more 
complicated planetary configurations, of this design is seen as work- 
ing to the advantage of reliability. 

The 

Where deemed advantageous, separable bearing races are avoided. 

Use of spur rather than helical gearing. 
system of the task of reacting thrust loads. 

This relieves the bearing 

Splines are used sparingly in the design. 
necessary are employed and care is taken to avoid placing them in 
areas that will not provide an optimum environment, such as areas 
where shaft bending is high. All splines are straddled by double 
pilots to preclude the possibility of bending loads impairing the 
spline function. 

Only the minimum number 

Both the oil tank and the heat exchanger are designed integral with 
the gearbox. This eliminates any external fluid lines and connections, 
all of which are opportunities for leaks. 
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4.13.7.8 Gearbox Housing Design 

The three branch compound star gearbox of Figure 4.6-13 was designed with 

a light-alloy housing. Given the fact that the density and the modulus of 

elasticity of typical engineering materials suitable for housings vary together, 

the best stiffness-to-weight ratio is obtained with the least dense material, 

typically magnesium alloys. This conclusion is further enhanced by the fact 

that frequently wall thicknesses are chosen not because of stiffness or 

strength considerations, but because of casting limitations, and requirements 

for internally cored passages. 

The housing material chosen for the three branch design, however, was 

aluminum rather than magnesium. A slight sacrifice in stiffness-to-weight was 

deemed appropriate as magnesium is a very active metal and approaches to 

corrosion protection must be carefully considered. 

against the choice of magnesium is its softness, which necessitates greater 

use of fastener inserts and bearing liners. 

Another factor mitigating 

A 100' P elevation of lube temperature for the four branch compound star 
gearbox design of Figure 4.13-1, however, essentially rules out the choice of 
a light alloy housing because the material strength has begun to degrade 

unacceptably at the projected maximum operating temperatures. 

titanium housing was selected instead. Additional benefits, other than 

retention of strength at temperature, are: 

A fabricated 

0 Inherently good corrosion protection, thus additional operations in 
surface treatment are eliminated. 

0 Low coefficient of thermal expansion, thus critical dimensions remain 
more stable throughout the operating temperature range. 

0 Experience of General Electric in the fabrication of large titanium 
structures. 

Table 4.13-5 sumarizes.the various properties of all the examined candi- 

date housing materials. 

The housing of the four-star gearbox also incorporates the heat exchanger 

and the oil tank. As a fabricated assembly, it is clearly superior and less 

costly to integrate these functions compared with a cast gearbox housing 

necessitating external system components. 
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0 Option 

- Offset Adapter Gearbox - In-Une Adapter Gearbox - Additonsl Star Gear Idlers 

- R o v e d  LP Turbine Rotor - Star Gear and Epicyclic Amng. 

Table  4.13-5. Opposite Rotation Comparison Studies. 

AW% 

13 
25.7 
19.3 

0 
0 

- Comptomhed Star Gear Amng.' 1 ExiEd 

Ink Mesh 
26.7 

A En. n 
-36 
-1.44 
-a0 

0 
0 

+.08 

-.lo - 

Comments 

No Longer 'In-Line" 
Many Gears and Bearings 
Probably 3 Star Gear System 
3 Additional Gears 
6 Additional Bearings 
Major Engine Changes 
Two Unique Gearbox 
Designs 
No Additonal 
Gears and Bearings 
But Larger Than Baseline 

%omparad to Baseline 
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4.13.7.9 GearboxIPropfan I n t e r f a c e  

The propfan, with the  e l e c t r i c  PCM of  Task V I 1 1  ( a s  shown by Figure 

4.14-1) p laces  three  p r i n c i p a l  requirements upon the  gearbox. 

0 The connection between the gearbox output s h a f t  and the  propfan hub 
i s  by a f langed,  bo l ted  joint  with a curv ic  coupling t o  provide con- 
c e n t r i c i t y  and t o  transmit t he  torque. The p rope l l e r  t h r u s t  load i s  
taken by t h e  b o l t s  i n  tension;  b o l t  bending and shear  i s  t h u s  . 

el iminated.  

0 A high speed s h a f t  concentr ic  with the  SDG output s h a f t  powers the  
e l e c t r i c  PCM a l t e r n a t o r .  I n  the  case of the  advanced SDG, t h i s  s h a f t  
i s  sp l ined  i n t o  the  bore of t he  sun gear ,  and thus r o t a t e s  a t  engine 
low pressure  tu rb ine  speed. 

0 The s t a t i o n a r y  por t ion  of t he  o p t i c a l  s l i p r i n g  i s  supported by the  
nose of the  SDG and must be pos i t ioned  with s u i t a b l e  concen t r i c i ty  
r e l a t i v e  to  the  cen te r l ine  of t he  output s h a f t .  The redundant o p t i -  
c a l  cab les  supplying t h e  s i g n a l s  are routed over t he  ou t s ide  of t he  
SDG housing t o  make connections with the  s t a t i o n a r y  h a l f  o f  t he  
s l i p r i n g .  

4.13.7.10 Engine/Gearbox I n t e r f a c e  

There are two phys ica l  connections between the  engine and t h e  gearbox. 

The gearbox input  d r i v e  s h a f t  is  constructed i n t e g r a l  with the  sun gear .  

rear of  t h i s  s h a f t  i s  sp l ined  i n t o  the  engine low pressure  turb ine  s h a f t  which, 

a t  t h i s  s t a t i o n ,  i s  more proper ly  considered the  booster  f r o n t  s h a f t .  A s p l i n e  

pe rmi t t i ng  s l i g h t  misalignment i s  required,  as the  sun gear  i s  mesh-centered 

and s l i g h t  r a d i a l  movement i s  permitted t o  e f f e c t  load-sharing among t h e  

branches.  This  sp l ined  j o i n t  i s  configured such t h a t  the  SDG input s h a f t  i s  

a x i a l l y  cons t ra ined  r e l a t i v e  t o  the boos te r  f r o n t  s h a f t  and thus the  SDG sun 

gear  i s  posi t ioned a x i a l l y  by the  engine low pressure  system t h r u s t  bear ing.  

Gage spacers  may be used, i f  necessary,  t o  ensure t h a t  the sun gear  assumes 

t h e  c o r r e c t  a x i a l  p o s i t i o n  r e l a t i v e  to  the  mating SDG pin ions .  

The 

An outer  tube with a s t i f f  flanged connection a t  e i t h e r  end connects the  

gearbox housing r i g i d l y  t o  the  engine. 

i nd ica t ed  t h a t  a r i g i d  gearboxlengine connection w a s  the  p re fe r r ed  mounting 

and i n s t a l l a t i o n  arrangement. Such cons idera t ions  as assur ing  s a f e t y  from 

whir l  f l u t t e r  i n  the  case of a f a i l ed  e las tomer ic  mount s i t u a t i o n  a r e  made 

e a s i e r  with t h i s  design.  

Discussions with the  Lord Corp., 

c 
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Four equally-spaced pads for elastomeric mounts are provided on the 
exterior of the gearbox housing. 
reacting thrust, vertical and side loads, and torque. A rear engine mount is 
provided for reacting vertical and side loads but it does not restrain the 

engine against axial movement (thrust) or torque (roll about the engine 

centerline). This mounting arrangement is shown in Figure 4.13-8. 

These mounting points are responsible for 

4.13.7.11 Gearbox Physical Description 

The gearbox preliminary design produced in Task V I 1  is an in-line design 
(input and output shafts on the same centerline). 
standpoint there is little to choose between in-line and offset configurations; 

the choice is largely affected by installation considerations of the aircraft 
application. 

From a gearbox designer's 

The ratio of this gearbox is 7.3075:1, which is a slight change in numeri- 
cal ratio from the 7.25:l of the gearbox described in Task 111. 

ratio change permits more desirable tooth action as is described in Section 
4.13.7.2. The weight saving between the three branch gearbox of Task 111 and 
the four branch gearbox of Task V I 1  is 178 pounds. 

This slight 

4.13.7.12 Maintenance 

Many features in the gearbox of Task V I 1  are responsible for a projected 
reduced maintenance burden. They are: 

0 Design is for a long system life. Conservative criteria is used for 
bearing and gear selection. 

0 The titanium housing is inherently corrosion resistant. Also because 
of the hardness of titanium, the use of inserts and bearing liners as 
compared to the use of a light alloy casting is greatly reduced. 

0 The use of an integral oil tank and a heat exchanger attached to the 
housing eliminates all external lines and fluid connections thus 
reducing the areas that traditionally require significant maintenance. 

0 Elimination of all functions possible that do not relate directly to 
the primary job of driving the propfan remove whole systems which 
have proven to be significant maintenance burdens in the past. 
example is the replacement of an accessory drive section by a single 
power extraction pad for driving an AMADS. 

An 
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0 El imina t ion  of s p l i n e s ,  where p o s s i b l e ,  and placement of  t h e  remain- 
i n g  s p l i n e s  such t h a t  adequate  l u b r i c a t i o n  i s  p r e s e n t  and t h e  proba- 
b i l i t y  f o r  wear i s  low. 

0 Use of modular c o n s t r u c t i o n  where f e a s i b l e .  The lube and scavenge 
pumps are removeable as modules wi thout  t h e  n e c e s s i t y  o f  d i sconnec t -  
i n g  any e x t e r n a l  plumbing. The accessory  d r i v e  pad i s  removeable as 
a module as w e l l .  The propfan  PCM h igh  speed d r i v e  s h a f t  and hydrau- 
l i c  s l i p r i n g  can  be removed from the bore  o f  t h e  output  s h a f t  wi thout  

t h e  n e c e s s i t y  o f  d i sassembl ing  t h e  gearbox o r  even t h e  need o f  remov- 
i n g  it from t h e  a i r c r a f t .  

0 Shaf t  o i l  seals are designed t o  be e x t e r n a l l y  r e p l a c e a b l e  without  a 
gearbox disassembly.  

0 Where p o s s i b l e ,  s epa rab le  bea r ing  i n n e r  races are e l imina ted  and bear -  
i n g  r aces  are i n t e g r a l  wi th  t h e  gea r  s h a f t s .  

F igu re  4.13-9 shows the  proposed modular arrangement of  t h e  gearbox. 

4.13.7.13 Opposi te  Ro ta t ion  Gearboxes 

A pre l imina ry  s tudy  w a s  done i n  regard  t o  o p p o s i t e  r o t a t i o n  g e a r  boxes f o r  

r i g h t  and l e f t  wing a p p l i c a t i o n s .  There appear t o  b e  a t  least  seven o p t i o n s  t o  

accomplish t h i s .  These are summarized i n  Table  4.13-5. 

are weight and e f f i c i e n c y  d e l t a ' s  compared t o  the b a s e l i n e  which i s  t h e  fou r  

s ta r  i n - l i n e  conf igu ra t ion .  F igure  4.13-10 through 4.13-12 show schemat ics  of 

t h e s e  seven arrangements a long with some gene ra l  comments. 

Shown i n  Table  4.13-5 

4.13.7.14 Gearbox Weight 

The t o t a l  weight and t h e  weight of t h e  va r ious  components o f  t he  four  

branch gearbox i s  shown by Figure  4.13-13. For t h e  same mis s ion ,  t h i s  gearbox 

i s  178 pounds l i g h t e r  t han  t h e  t h r e e  branch gearbox d i scussed  i n  Task 111. 

breakdown of  t h i s  weight sav ings  i s  as fol lows:  

The 

105 l b  l e s s  t o t a l  weight o f  gearbox system 

34 l b  

20 l b  weight o f  h e a t  exchanger suppor t  and flowpath 

19  l b  a d d i t i o n a l  hous ing  weight t o  i n c o r p o r a t e  i n t e g r a l  o i l  t ank  (3-branch 

weight o f  h e a t  exchanger inc luded  i n  4-branch G / B  

178 lb has n e i t h e r  i n t e g r a l  t ank  o r  h e a t  exchanger)  
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0 Offset Adapter Gearbox - 2 large Additional Gears n 

- G I B  - . Engine I 

- 4Bearings - Housing and Structure - Additional Heat Generation 

- 5 Large Additional Gears 

Figure 4.13-10. Offset and In-Line Opposite Rotation Gearboxes. 
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0 Additional Star Gear ldkn  - Change to 3 Star System - 3 Additonai Gears - 6 Additional Bearings - 2 Uniqw Out Put Gears 

R ~ ~ ~ ~ d L P T u r b i r n R o t o r  
-M.jorEnglwchng.r - UnlquoTurMrn - CouUw-Robting ~ n g s / S e a l s  
--sY-mch.ng.s - Seal Wind Back Changes - Scavenge Changes in G/B 

Figure 4.13-11. Added Star Gear Idlers and Reversed LP Turbine Rotor of 
Reversed Rotation. 
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Star Epicyclic 

n 

- Two Unique Designs 

0 'Compromised Star Gear Arrangement - No Additional Gears - Same First Stage Mesh - Ring GR Output for CCW - Sun GR Output for CW - 'Conformal" 

- ccJ& --- I I  cw 

LJ 

Figure 4.13-12. Star Versus Epicyclic and Compromised Star Gear Arrangement 
for Opposite Rotation. 
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Weight Scaling 

The weight scaling trends shown by Figure 111-3 in Appendix 111 are valid 

for the four branch compound star gearbox as well as for the offset gearbox. 

4.13.7.15 Costs 

First costs and maintenance costs have historically been hard to estab- 
Many turboprop gearbox designs are intimately configured with the gas lish. 

generator engine, and thus are not amenable to "break out" the isolated costs 

of gearboxes from the rest of the propulsion system. 

In-house manufacturing estimates for the in-line, 4-branch, star configu- 
ration have been developed from a detailed cost estimate that was made in Tasks 
I through VI. The manufacturing shop cost of the gearbox will be in the order 
of $180,000 at the 250th unit. However, with normal amortization of design and 

development costs, the selling price of the gearbox at the 250th unit is likely 

to be about $330,000. 
assumptions are made on the amortization factors. 

This price will vary drastically downward if different 

Maintenance costs for gearboxes in cormnercial service have historically 

been low when compared to the maintenance cost of the propeller driven by the 
gearbox. In general terms, propellers cost about four times as much to main- 

tain as do gearboxes. 

first cost factors where parts count heavily favors the least numbers of gears, 
shafts, bearings, splines, and seals. The selection of titanium fabrication 

for the gearbox housing is adverse on first cost, but does allow the achieve- 
ment of lower maintenance costs. 

For this study not much improvement was seen in gearbox 

A maintenance "cost factor" of about 15% of gearbox first cost is estimated 
to be achievable with a gearbox designed for 20,000 hours MTBUR. 

gearbox price this then equates to an overhaul cost of $49,500, or $2.475 per 
flight hour. 

boxes from 1/3 to 1/2 the horsepower of the APET gearbox. 

On a $330,000 

This is at least as good a value as is being achieved by gear- 

374 



QJWWAL PAW ' ts 
OF POOR QUAL~TV 

SECTION 4.14 

PITCH CHANGE MECHANISM CONCEPTUAL DESIGN 

8 

Sect ion 
-r 

4.14.0 Design Objectives and Concepts 
4.14.1 Description of System 
4.14.2 Preliminary Designs 

4.14.2.1 
4.14.2.2 Ballscrew Blade Drive 

8 
I Dual Bevel Gear Blade Design 

I 4.14.3 Speed Increaser and Emergency Feather Module 

Page 

377 

382 

38 5 

385 
388 

388 - 

,, . . . '  ' 

4.14.11 Failwe Ikbci 413 

4.14.12 Reli abi li t 417 

390 



Figure 

4.14-5. 
4.14-6. 

4.14-7. 
4.14-0. 
4.14-9. 

4.14-10. 
4.14-11. 
4.14-12. 
4.14-13. 
4.14-14. 

4.14-15. 
4.14-16. 
4.14-17. 
4.14-18. 
4.14-19. 

FIGURES (Concluded) 

Pitchlock Schematic Normal Operation. 
Pitchlock Schematic Lock Engaged. 
Pitchlock Drive. 
Cross Section of Optical Slipring. 
Schematic of Slipring. 
On-Axis View of Slipring. 
Source Reflection Patterns. 
Modulation from Source Pattern. 

Slipring With 3 Source Fibers and 4 Detector Fibers. 
Traction Drive Arrangement for 21O:l Ratio. 
Traction Drive Arrangement for 2LO:l Ratio. 
Basic Interior PM Synchronous Motor. 
Basic Switched Reluctance Motor. 
PCM Control Schematic. 
Full Power Losses. 

TABLES 

Table 

4.14-1. 
4.14-2. Performance Estimate. 
4.14-3. Performance Estimate. 

4.14-4. APET PCM-Motor/Generator Choices. 
4.14-5. 
4.14-6. Motor Design. 
4.14-7. Motor Scaling. 
4.14-8. Generator Design. 
4.14-9. Generator Scaling. 
4.14-10. Failure and Effects. 
4.14-11. Failure and Effects. 
4.14-12. Propfan Summary. 

Design Parameters Used for This Study. 

Recent Technological Advances Important for AC Drives. 

376 

Page 

393 

393 

395 

397 

397 

398 

398 

399 

399 

403 

404 

406 

407 

41  1 

414 

Page 

386 

401 

401 

405 

407 

408 

408 

410 

410 

41 5 

416 

417 



4.14 PITCH CHANGE NECHANISM CONCEPTUAL DESIGN 

4.14.0 Design Objectives and Concepts 

About three years ago General Electric identified the need for substantial 
improvements in the overall level of reliability that would be required for a 
propfan pitch change mechanism (PCM) and its controls. These were formulated 

into the 

1. 
2.  

3 .  

4. 

5 .  

6. 

7. 

8 .  

9 .  

10. 

11. 

12. 

following list of highly desirable features: 

An autonomous power source. Do not recommend use of gearbox oil. 
Completely separate motive power for emergency feather. 
"Closed loop" functions within the rotating propeller assembly. 
Redundancy of control inputs with FADEC having the highest level of 
authority. Complete ground check-out capability. 
Modularity and ease of component(s) removal. 
A traveling mechanical pitch lock. External power required only 
for un-lock functions. 
Highly precise pitch selection. 

Self-generated anti-icing power supply 
Self-test systems and diagnostics. 
Ease of maintenance e.g. no external lubrication of components 
required. 
Friction/wear points (e.g. seals) held to a minimum. 
No filters, no centrifugal dirt traps. 

Hysteresis held to a minimum. 

Each feature in this list was expanded into concepts that appeared to have the 
necessary advantages for an "advanced" PCM. The .paragraphs that follow are 
number keyed to the list above. 

1.0 ADVANCED PITCH CHANGE MECHANISM - AUTONOMOUS POWER SOURCE 

1.1 Electromechanical system combining a motor/generator assembly coru- 
tating with the propfan is one option. 

1.2 Control for the above could be all-electronic using GE ECM Technology. 
Signalling could be fiberoptic. 

ECM = ELECTRONICALLY COMMUTATED MOTOR 

1.3 High rotational speed pneumatic motor. Mounted on the back of the 
propfan gearbox is one option. Also could be located on the forward 
face of the propeller hub and be supplied by high pressure air deliv- 
ered through either a stationary or a rotating supply tube. 
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Control for the above could 
could be fiberoptic. Power 
regulated bleed system from 

be an all-fluidic logic unit. Signalling 
source would be a dedicated pressure- 
the turboshaft engine compressor. 

Ground operations with engine shutdown could be regulated pressure 
from the aircraft APU. 

Emergency operation could be from a high-pressure air storage bottle 
communicating directly with a ram actuator connected to the mechanisms 
that rotates the blades in the pitch sense. 

2.0 ADVANCED PITCH CHANGE MECHANISM - EMERGENCY FEATHER 

A very attractive system could be developed that used the rotational 
windmilling propfan energy as the motive power source. 

Control over the above could be by a clutch/brake unit that does not 
operate at all during normal control functioning. 

The concentric, high-speed, gearbox provided shaft that penetrates 
completely through the propfan hub may prove to be a highly desirable 
concept for any emergency feathering system. 

Signalling for the above could be fiberoptic using a completely 
separate light source, and completely separate fiberoptic bundle, 
from the "normal" signal system. 

3.0 ADVANCED PITCH CHANGE MECHANISM - 'CLOSED LOOP' FUNCTIONS 

It is possible to devise a pitch change mechanism and control system 
that is corotating with the propfan and which controls all the 
normal operations of the propfan. 

- It senses its own rotational speed. 

- It has stored programs that contain all the necessary information 
for each significantly different phase of flight, e.g., start, 
taxi, take-off, climb, cruise, descent, land, "normal" feather. 
(Emergency feather could be separately commanded) Reverse on 
landing, etc. 

FADEC control over the above could be in a simplistic manner. FADEC 
would select the appropriate "Closed Loop" Program function for the 
flight condition and then command the rotating system to be 
autonomous. 



3.3 FADEC would monitor the autonomous systems performance and would step 
in with higher authority should programs limits be exceeded. 

4.0 ADVANCED PITCH CHANGE MECHANISM - REDUNDANCY OF CONTROL 

4.1 If fiberoptic signalling is used there may be two triple-redundant 
FADEC outputs with majority voting logic. 

- 
- The other will be the ''emergency" control system. 

One will be the "normal control system. 

4.2 Loss of both sets of signals will be an automatic command to coarsen 
pitch and supply an appropriate cockpit warning. 

4.3 The normal and emergency controls will be physically separated from 
each other by the maximum allowable geometry. The emergency system 
may be totally enclosed in a fireproof sleeve. 

4.4 There may also be a third signal which is a simple confirmation. 
closed-loop form, that both systems are alive and well, i.e., controls 
functions are at nominal settings, power supply is O.K., etc. 

In 

5.0 ADVANCED PITCH CHANGE MECHANISM - MODULARITY 

5 . 1  Insofar as practical, all mechanisms and controls will be stacked on 
each other, with quick attach/detach modules. 

5.2 The diagnostic circuit features being monitored by FADEC will resolve 
faults to the module level. 

5.3 It will never be necessary to uncouple the propfan from the gearbox 
for control or PCM malfunction. 

5.4 Traction drives, if used, will be sealed units that are located where 
normal maintenance will not disturb their mechanical connections. 

6.0 ADVANCED PITCH CHANGE MECHANISM - MECHANICAL PITCH LOCK 
. 6.1 A mechanical pitch lock will be provided that leads propeller pitch 

when finer pitch is commanded and lags propeller pitch when coarser 
pitch is commanded. 

6.2 The pitch lock will be set in the range of commanded pitch minus one 
to two degrees. 
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External power is only required to unlock the mechanism. 
no power is required for the lock to be operative. 

Conversely, 

Spring power will not be used in critical functions. 

The locking unit, as an assembly, will be an easily removed module. 

The normal pitch change function will be routed through the lock. 
Any pitch lock malfunction will automatically restrict the propfan to 
obey coarser pitch commands only. 

7.0 ADVANCED PITCH CHANGE MECHANISM - PRECISE PITCH SELECTION 

It is believed that the inherent "stiffness" of traction drive speed 
reducers may lead to excellent use in precise pitch selection systems, 
when powered by equally precise rotary power units. 

An alternative using linear ball-screw actuators has been identified. 
The nut and rod end balls would be preloaded against each other to 
obtain zero backlash. 

Again, traction drives may be an attractive solution for the high 
reduction ratios required to convert the rotation speed of the power 
source into precise axial positioning. 

For all systems, the accuracy of the final engagement of the mechanisms 
to the individual prop€an blades is a critical design selection. No 
favorite method has yet been identified. 

8.0 ADVANCED PITCH CHANGE MECHANISM - ANTI-ICING POWER SUPPLY 

Although not considered to be a "critical" item there are many and 
obvious advantages for the propfan/spinner anti-icing ( o r  de-icing) 
system to be an autonomous subsystem of each rotating propfan 
assembly. 

For an electromechanical PCM the power source could be variable fre- 
quency A.C. derived from the PCM generator. 
ator would be sized to provide the requisite power output to supply 
PCM and anti-icing functions simultaneously. 

In this case, the gener- 

A cursory examination of the practicality of carrying a continuously 
rechargeable electric battery subsystem has been made. This idea may 
be worthy of a separate investigation, particularly if the battery 
could also provide the power source for "emergency" feathering. 

The elimination of powered sliprings and brushes is a primary 
objective, and has obvious merits. 



9.0 ADVANCED PITCH CHANGE MECHANISM - SELF TEST AND DIAGNOSTICS 

9.1 Dependent on the selection of the PCM power source, there are a 
number of desirable self-test and diagnostic functions. 

9.2 Each designated module must monitor its own health and report to the 
FADEC diagnostic center. 

9.3 Noncritical fault data will be memorized and read out after flight, 
on a maintenance diagnostic test device. Critical faults will be 
analyzed by FADEC and appropriate safety control measures will be 
initiated. 

9.4 The system will be completely self-checking, on the ground, when 
supplied with an external power source. 
for recognizing any anomalies and wi.11 report (via CRT messages) to 
the cockpit propulsion display system. 

FADEC will be responsible 

10. ADVANCED PITCH CHANGE MECHANISM - EASE OF MAINTENANCE 

10.1 Modular design is the objective. 

10.2 Components that require lubrication will be sealed, enclosed units. 

- Propfan blade bearings. 
- Traction drive fluid, ball-screw actuator lubricant. 
- Electric or pneumatic motor  bearings. 

10.3 Consideration will be given to air beatings where practical. 

10.4 Links, link bearings or items that wear through fretting, will only 
be used where the primary load is in tension. 

10.5 Maintenance errors elimination is a key objective. 

11. ADVANCED PITCH CHANGE MECHANISMS - FRICTION, WEAR POINTS 

11.1 No piston rings, no seals thus no wear. 

11.2 All motion will be via antifriction bearings that are designed for 
35,000 hours of system operation. 
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11.3 

11.4 

12.1 

12.2 

12.3 

12.4 

Stability of joints will be maintained by accurately machined faces 
and lands. All splines will have positive lands that relieve spline 
teeth of bending loads. 

Axial fit-up of components will account for thermal environment. 
Matched axial and radial expansion/contraction of internal mechanisms 
to their casings will be a design objective. 

12. ADVANCED PITCH MECHANISMS - FILTERS, DIRT TRAPS 

The design and manufacturing philosophy will use the latest techniques 
in the use of assembly clean rooms. 

Because hydraulic systems will not be used, all oil filters are 
eliminated. 

Cross contamination of the gearbox and the PCM cannot occur. There 
will be no interfaces that can contaminate each other. 

The use of sealed units and the elimination of hydraulic fluids will 
eliminate dirt traps in rotating "G" fields. 

4.14.1 Description of System 

Figure 4.14-1 is a cross section of the final configuration that evolved 

from this study. The propeller hub is connected to the gearbox output shaft 

by means of a bolted joint incorporating a curvic coupling. A high speed 

driveshaft, coupled at the rear to the gas generator low pressure turbine (in 

the case of an installation with a concentric gearbox) extends forward along 

the centerline of the gearbox output shaft. It is this shaft that transmits 
the energy required for pitch change and anti-icing to the propeller. In 
addition to the foregoing, the gearbox must support the stationary portion of 

the optical slipring required to transmit signals to and from the propeller 
assembly . 

The demands, or constraints, that a propeller of this design places upon 

the system of which it is a part may be summarized as follows: 

e A flanged, hollow drive shaft is required to support and drive the 
propeller. 

A hydraulic slipring is required for lubrication of the motor/ 
generator unit and emergency feather oil supplies. 

e 
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Figure 4.14-1. Advanced Technology Pitch Control System. 
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0 A h i g h  speed d r i v e  s h a f t  is  r equ i r ed  t o  provide  t h e  energy t o  t h e  
p rope l l e r  p i t c h  change mechanism. 

0 A support  f o r  t h e  s t a t i o n a r y  p o r t i o n  of t h e  o p t i c a l  s l i p r i n g  i s  a l s o  
requi red  and a c o n t r o l  s y s t e m  t h a t  provides  t h e  necessary  o p t i c a l  
s i g n a l s  t o  t h e  s l i p r i n g  and which w i l l  also accep t  r e t u r n  s i g n a l s  
from the  p r o p e l l e r  assembly. 

A speed i n c r e a s e r ,  when used ,  steps up the speed of t h e  h i g h  speed d r i v e  

s h a f t  t o  t h e  speed r equ i r ed  by an opt imized a l t e r n a t o r .  

d r i v e s  t h e  a l t e r n a t o r ,  which is  t h e  next  most forward component, by means of a 

hollow s h a f t .  

f e r s  t h e  generated power t o  t h e  e l e c t r o n i c  module which i s  loca ted  a t  t h e  

extreme f r o n t  of t h e  p r o p e l l e r  assembly. When a p p r o p r i a t e ,  e l e c t r i c  power i s  

r e tu rned  a long  t h i s  same c a b l e  r o u t e  t o  t h e  rear of t h e  a l t e r n a t o r  where i t  i s  

c a r r i e d  t o  the motor v i a  i n t e r n a l  conductors .  

forward of t h e  a l t e r n a t o r ,  and when s e r v i c i n g  i s  r e q u i r e d ,  they  a r e  removed 

toge the r  as an e l e c t r i c a l  machinery module. 

The speed increaser 

A power c a b l e  e x i t s  from t h e  rear of the a l t e r n a t o r  and t r a n s -  

The motor i s  l o c a t e d  immediately 

The s o l i d  e l e c t r i c  motor d r i v e  s h a f t  ex tends  rearward through t h e  hollow 

a l t e r n a t o r  s h a f t  and couples  w i t h  t h e  d r i v e n  h a l f  of t h e  emergency f e a t h e r i n g  

c l u t c h .  The motor s h a f t  a l s o  ex tends  forward and d r i v e s  t h e  sun r o l l e r  of a 

t r a c t i o n  d r i v e  reduct ion  u n i t  through a to rque  l i m i t i n g  c l u t c h .  During normal 

o p e r a t i o n  c o n t r o l  l o g i c  p reven t s  t h e  end-of- t ravel  s t o p s  from be ing  impacted 

a t  h igh  speed,  but t h e  p o s s i b i l i t y  of mis-r igging t h e  system dur ing  a n  overhaul  

does e x i s t ,  and i n  t h i s  s i t u a t i o n  t h e  s t o p s  could  be impacted w i t h  s u f f i c i e n t  

energy t o  damage p o r t i o n s  of  t h e  s y s t e m  were i t  no t  f o r  t h e  p r o t e c t i o n  

a f fo rded  by t h e  torque  l i m i t i n g  c l u t c h .  

The t r a c t i o n  d r i v e  provided is a hybr id  u n i t ,  meaning t h a t  a p o r t i o n  of 

t h e  t o t a l  reduct ion  i s  performed v i a  c o n t a c t  between smooth r o l l i n g  e lements ,  

bu t  a t  t h e  output  s t a g e ,  where t h e  to rque  i s  h igh ,  i t  u t i l i z e s  r o l l e r s  ca r ry -  

i ng  outboard pinions which d r i v e  an output  gea r .  A r o t a r y  t r ansduce r  monitors  

r o t a t i o n  of t h i s  s t a g e  and s u p p l i e s  a s i g n a l  t o  t h e  e l e c t r o n i c  c o n t r o l .  This  

s i g n a l  i s  a func t ion  of b l ade  p i t c h  ang le ,  and i s  used both  f o r  d i s p l a y  i n  t he  

cockp i t  and f o r  c o n t r o l  re f inement .  
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The output  of t h e  t r a c t i o n  d r ive  r o t a t e s  a b a l l  screw assembly. The b a l l  

n u t ,  which i s  t r a n s l a t e d  a x i a l l y  by screw r o t a t i o n ,  c a r r i e s  t h e  forward ends 

of l i n k s  which are connected t o  crank arms mounted t o  t h e  inboard ends of t h e  

p r o p e l l e r  b lade  t runnions .  By t h i s  arrangement, r o t a t i o n  of the  b a l l  screw 

causes  b lade  r o t a t i o n  about t h e  p i t ch  changing a x i s .  E las tomer ic  t o r s i o n a l  

s t o p s  are loca ted  a t  both ends of the ba l l s c rew.  The b a l l  nu t  carries forward 

and a f t  f ac ing  tangs  which engage the f u l l  f e a t h e r  and f u l l  r eve r se  s t o p s  a t  

t h e  end of t r a v e l  and prevent  f u r t h e r  r o t a t i o n  of t h e  ba l l sc rew i n  t h a t  d i r ec -  

t i o n .  The c rank  arms are pos i t i oned  on t h e  b lade  t runnions  such t h a t  dur ing  

forward f l i g h t  t h e  b l ade  c e n t r i f u g a l  t w i s t i n g  moment loads  t h e  l i n k s  i n  

t e n s i o n  r a t h e r  than compression and thus they  are not sub jec t ed  t o  buckl ing.  

4.14.2 Pre l iminary  Designs 

The des ign  parameters  used i n  t h i s  s tudy  are l i s t e d  i n  Table 4.14-1. 

These parameters  were obta ined  from Hamilton-Standard who a c t e d  as a subcon- 

t r a c t o r  f o r  t h i s  t a sk .  The loads  and f o r c e s  be ing  presented  were a p p r o p r i a t e  

f o r  a "basel ine" propfan w i t h  an  800 f t / s e c  t i p  speed. 

4.14.2.1 Dual Bevel Gear Blade Design 

The f i r s t  des ign  c o n s i s t e d  of a blade  d r i v e  scheme us ing  p in ions  a t t ached  

t o  each blade roo t  which were d r iven  by a p a i r  of opposing l a r g e  b e v e l ' g e a r s  

which r o t a t e d  about  t h e  p r o p e l l e r  hub c e n t e r l i n e .  F igure  4.14-2 i s  a cross 

s e c t i o n  of t h i s  des ign .  As can be seen from t h e  f i g u r e ,  t h i s  c o n f i g u r a t i o n  

had t h e  motor l oca t ed  a t  t h e  extreme forward end of t h e  PCM w i t h  t h e  elec- 

t r o n i c  c o n t r o l  u n i t  placed i n  a surrounding annulus .  The motor d r i v e s  rear- 

wards i n t o  t h e  sun r o l l e r  of t h e  t r a c t i o n  d r i v e .  I n  t h i s  device  t h e  t r a c t i o n  

d r i v e  has  a r a t i o  of 101: l .  The o u t p u t  of t h e  t r a c t i o n  d r i v e  i n  t u r n  powers 

a s t a r  gear  r educ t ion  g e a r s e t .  

of a p l a n e t a r y  d i f f e r e n t i a l  reduct ion  u n i t  which i n  t u r n  d r i v e s  t h e  opposing 

dua l  bevel g e a r s  i n  oppos i t e  d i r e c t i o n s .  

b u i l t  i n t o  an  annulus  surrounding the alternator. 

This s tar  gea r  r educ t ion  s t a g e  d r i v e s  t h e  inpu t  

The p l a n e t a r y  d i f f e r e n t i a l  s t a g e  i s  

H i s t o r i c a l l y  many success fu l  p r o p e l l e r s  have been b u i l t  where a bevel  

gea r  has  d r i v e n  p in ions  a t t ached  t o  the b lade  t runnions .  The problem i n  t h i s  
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Table 4.14-1. Design Parameters Used For This Study. 

Pitch Control Slew Rates 

Condition 
Normal Control 
Synchro-Phasing 
Feather 
Reverse 
Ground Operation 
(Engine Inoperative) 

Pitch Control Blade Angles 

Condition 
Feat her 
Flight Idle (0.3 Mn) 
Max Reverse 
Min Prop Torque 
(Static Conditions) 
Erne r ge nc i e s 

Pitch Control Torque 

Blade Pitch Rate (Deg/Sec> 
0-3 
0- 3 
15 
15 

0-3 

Degrees (3/4 Blade Span) 

+85" 
+39 " 
-7 " 

0" 
Approx 1' Pelow that when 
Condition Occurred 

Max Total Blade Twisting Moment at 100% RPM = 
489,000 in-lbs 

Total Blade Twisting Moment on Pitch Lock at 100% RPM = 
461,000 in-lbs 

Basic design Requirements 

Max SHP at Prop 
Prop RPM 
Overall Speed Ratio 
1-P Shaft Moment 

At 0.2 Mn Climb 
At 0.74 Mn Cruise 

At 0.2 Mn Climb 
At 0.74 Mn Cruise 

At 0.1 Rad/Sec 

Static Take-Off 
0.2 Mn Climb 
0.74 Mn Cruise 

Ambient Temperature 

Shear Load (Up) 

Shaft Gyro Moment 

Prop Thrust 

386 

12,500 
1160 
7.4:l (+ 0.1) 

172,000 in-lb 
68,400 in-lb 

2620 lb 
2230 lb 

35,300 in-lb 

19,500 lb 
16,000 lb 
3,800 lb' 
-40" F 
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instance is that when ten blades (and ten pinions) are used, the pinion diame- 
ter must of necessity be significantly smaller in diameter than the bevel 

gears. 
the wrong, or speed-increasing direction. This requires that additional 

reduction be designed into the stages preceding the final stage. 
tional reduction produces extremely high torque to the input of the speed 

increasing stage, which results in robust, heavy, components. 

This condition produces a ratio in the final blade drive that is in 

This addi- 

4.14.2.2 Ballscrew Blade Drive 

In a successful effort to evade the weight shortcoming of the previously 

decribed design, a PCM having blades rotated by links about their pitch 

trunnions was designed. These links have their forward ends translated by a 
ballscrew/ballnut device which is concentric with the propeller centerline. . 

Figure 4.14-3 is a cross section of this design. At this stage of development 
the PCM still retained the forward motor location and a no-back type of pitch 

lock. 

Further development of this concept resulted in the final design. The 

significant differences between the scheme of Figure 4.14-3 and the final 
configuration are the combining of the motor and alternator into a single 

module placed at the center of the PCM and the addition of a following pitch 
lock mechanism. 

4.14.3 Speed Increaser and Emergency Feather Module 

Although serving separate functions, the speed increaser and emergency 

feathering clutch have been combined into one module which is located just to 

the rear of the alternator. Figure 4.14-4 is a cross section of this module. 

4.14.3.1 Speed Increaser 

The speed increaser raises the low pressure turbine speed (rpm) of the 

gas generator to the rpm required by an optimized alternator. 

tions may have this function incorporated as part of the main speed decreasing 
gearbox which drives the propeller. The installation shown here is typical 

Some installa- 
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Figure 4.14-4. Combined Speed-Increasing Train and 
Emergency Feather Mechanism. 
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of i n s t a l l a t i o n s  having concen t r i c  

i n c r e a s e r  i s  a t h r e e  branch double 

main gearboxes mechanism. The speed 

reduct ion r eve r t ed  arrangement.  Lubri-  

c a t i o n  t o  t h e  speed i n c r e a s e r  as w e l l  as l u b r i c a t i o n  t o  the  a l t e r n a t o r  bear- 

i ngs  i s  suppl ied  by means of a channel i n  t h e  h igh  speed d r i v e  s h a f t .  

As i s  t h e  case  w i t h  a l l  t h e  o ther  major components of t h e  p i t c h  change 

mechanism, t h e  speed i n c r e a s e r  may be removed as a module along wi th  t h e  

emergency f e a t h e r i n g  mechanism. 

4.14.3.2 Emergency Feather ing Mechanism 

An e n t i r e l y  separate, all-mechanical mechanism i s  provided t o  f e a t h e r  t he  

p r o p e l l e r  i n  an emergency i n  t h e  event t h a t  a p r i o r  f a i l u r e  has  occurred i n  

t i e  normal p i t c h  c o n t r o l  system, which inc ludes  normal f e a t h e r i n g  c a p a b i l i t y .  

This  s e p a r a t e ,  backup system c o n s i s t s  of a f l u i d  coupl ing  t h a t  s e r v e s  as a 

dump-and-fill c l u t c h  which, when engaged, couples  t h e  h igh  speed d r i v e  s h a f t  

d i r e c t l y  wi th  t h e  t r a c t i a n  d r i v e  sun r o l l e r .  The a l t e r n a t o r  s h a f t  i s  hollow 

and an  ex tens ion  s h a f t  of t h e  motor extends rearward through t h e  a l t e r n a t o r  

and couples  t o  t h e  d r i v e n  h a l f  of the f l u i d  coupl ing.  

This coupl ing  i s  f i l l e d ,  when commanded, by means of a second f l u i d  

channel which i s  independant of t h e  o the r  channel i n  t h e  h igh  speed d r i v e  

s h a f t  used t o  supply  coo l ing  and lube flow t o  t h e  PCM. The d i r e c t i o n s  of 

r o t a t i o n  w i t h i n  t h e  system are chosen such t h a t  when t h e  p r o p e l l e r  i s  wind- 

m i l l i n g  (or engine d r i v e n )  i n  t h e  normal d i r e c t i o n  of r o t a t i o n ,  coupl ing  

of t h e  h igh  speed s h a f t  d i r e c t l y  t o  the motor w i l l  d r i v e  t h e  ba l l sc rew v i a  

t h e  t r a c t i o n  d r i v e  i n  t h e  d i r e c t i o n  t o  cause  movement t o  a c o a r s e r  p i t c h .  

long as t h e  p r o p e l l e r  con t inues  t o  windmill ,  t h e  h igh  speed d r i v e  s h a f t  w i l l  

be d r iven  by t h e  p r o p e l l e r  v i a  t he  main speed decreas ing  gearbox and a l t e r n a t o r  

speed i n c r e a s e r .  

be engaged, t he  b lades  w i l l  cont inuously coarsen  t h e i r  p i t c h  u n t i l  t h e  system 

comes t o  rest wi th  t h e  b lades  f u l l y  fea thered .  

cause r e v e r s e  windmil l ing of t h e  p r o p e l l e r ,  as long as t h e  c l u t c h  i s  engaged 

a l l  r o t a t i o n  w i t h i n  t h e  system w i l l  be reversed  and t h e  b lades  w i l l  appro- 

p r i a t e l y  change p i t c h  s e t t i n g  such tha t  t h e  system w i l l  aga in  come t o  r e s t  

f u l l y  f ea the red .  

As 

By v i r t u e  of t h i s ,  i f  t h e  f e a t h e r i n g  c l u t c h  con t inues  t o  

Should f l i g h t  c o n d i t i o n s  
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A means of supplying oil to the emergency feathering channel within the 
high speed shaft that is independant of normal operation, and can be activated 

from the cockpit, is a requirement. This can be achieved by an electric motor/ 

pump unit which is integrated with the propfan gearbox, and which draws on a 

"reserved" section of the oil tank for its oil supply. In this manner it 
is entirely analagous to the emergency feather provision of a hydraulic 
propeller. 

4.14.4 Pitch Lock Mechanism 

The two initial schemes shown by Figure 4.14-2 and Figure 4.14-3 utilized 

no-back devices for the purposes of pitch locking. 

in the QCSEE variable pitch turbofan, a similar application here posed four 

Although used sucessfully 

major problems. They are: 

1. By its very nature, the no-back device possesses some lost motion 
which is not desirable in a precision positioning device. 

2. During continuous synchrophasing operation the device would be 
frequently locking and unlocking and therefore would absorb and 
dissipate significant energy. 

3. To assure complete safety all components downstream of the device 
would be required to be prime reliable. 

4. The very high centrifugal twisting moments (CTM'S) of the propfan 
blades demand a very strong mechanism in the pitchlock. 

In order to circumvent the above difficulties a different pitchlocking 

scheme was decided upon. It is shown by two isometric sketches, Figure 4.14-5 
depicting normal operation, and Figure 4.14-6 depicting a lockup situation. 
In Figure 4.14-5 all the arrows indicating direction of movement show motion 

in the coarsening pitch direction. Movement in this direction, even if inap- 
propriate, does not compromise flight safety as it cannot lead either to a 

propeller overspeed or  to a high drag condition. Therefore, travel in this 

direction is never inhibited by the mechanism. 

manded, the ball screw rotates in the direction of the arrow. The lugs come 
into contact, and the large gear is rotated by the ballscrew. This large gear 

When coarser pitch is com- 
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Figure 4.14-5. Pitchlock Schematic Normal 
Operation. 

Figure 4.14-6. Pitchlock Schematic Lock Engaged. 
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d r i v e s  t h e  smaller  gear  which i n  t u r n  r o t a t e s  one of t h e  two locking  screws 

( t h e  second screw i s  omit ted from t h e  s k e t c h ) .  Because of t h e  proper  r e l a t i o n  

between gear  r a t i o  and thread  l ead ,  t h e  p i t c h  lock  screw advances t o  t h e  r i g h t  

through t h e  ear a t t ached  t o  t h e  b a l l  nu t  a t  e x a c t l y  t h e  same ra te  t h a t  t h e  

b a l l  nu t  i t se l f  moves t o  t h e  l e f t .  Thus, t h e  screw i s  s t a t i o n a r y  wi th  r e spec t  

t o  t h e  p r o p e l l e r  hub and t h e  p i t c h l o c k  gap is maintained unchanged. 

I n  an author ized  move toward f i n e  p i t c h ,  a l l  t h e  d i r e c t i o n s  of  motion shown 

on F igure  4.14-5 are reve r sed .  

wi th  one s i g n i f i c a n t  except ion .  

screw was dr iven  by t h e  gears  as a r e s u l t  of lug c o n t a c t .  Movement toward 

f i n e  p i t c h  r equ i r e s  t h e  lock  screw t o  be d r i v e n  i n s t e a d  by i t s  motor i n  o r d e r  

t o  main ta in  lug  contac t -  and avoid p i t c h  lock  engangement (gap c l o s u r e ) .  

The d e s c r i p t i o n  of  o p e r a t i o n  i s  as b e f o r e  

I n  t h e  move toward coa r se  p i t c h  t h e  p i t c h l o c k  

Refer  t o  Figure 4.14-6 f o r  a ske tch  d e p i c t i n g  an unauthorized move 

toward f i n e  p i tch  which w i l l  r e s u l t  i n  a system lockup. Being a n  unauthor ized  

move, t h e  motor w i l l  no t  coope ra t e  i n  t h e  move and d r i v e  t h e  p i t c h l o c k  screw. 

Without t h e  c o n t r i b u t i o n  of t h e  motor t h e  lugs  on t h e  ba l l sc rew and l a r g e  gear  

w i l l  come out  of c o n t a c t  which r e s u l t s  i n  r o t a t i o n  of t he  ba l l sc rew wi thout  

any corresponding movement of t h e  gea r .  

is  d r i v i n g  t h e  lockscrew, i t  w i l l  remain s t a t i o n a r y .  As a r e s u l t ,  when t h e  

ba l l sc rew nut  moves t o  t h e  r i g h t ,  i t  w i l l  carry t h e  nonro ta t ing  lockscrew 

along wi th  i t .  Af ter  very  l i t t l e  movement, cor responding  t o  less than  a 

degree of b l ade  p i t c h  angle  change, t h e  locking  gap w i l l  c l o s e ,  p revent ing  

f u r t h e r  movement of t h e  system by prec luding  f u r t h e r  movement t o  t h e  r i g h t  of 

t h e  ba l l s c rew nut. F igure  4.14-7 i s  a s e c t i o n  through t h e  p r o p e l l e r  hub i n  

S ince  n e i t h e r  t h e  gea r  or t h e  motor 

t h e  p l ane  of t h e  l a r g e  gear  showing t h e  r e l a t i o n s h i p  of t h e  p a r t s  as they  

are in tended  t o  be. 

4.14.5 Opt ica l  S l i p r i n g  

The pos i t i on  of t h e  o p t i c a l  s l i p r i n g  r e l a t i v e  t o  o t h e r  components of t he  

p i t c h  c o n t r o l  s y s t e m  i s  shown by F igure  4.14-1. The r i n g  i s  loca ted  i n  the  

plane of t h e  p rope l l e r  d r i v e  f l ange .  I n  t h e  upper po r t ion  of F igure  4.14-1 

one set of t h e  t r iply-redundant  o p i c a l  f i b e r  bundles  can be seen leading  from 

t h e  gearbox e x t e r i o r  s u r f a c e  t o  t h e  s t a t i o n a r y  inne r  p a r t  of t he  r i n g  and from 
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Figure 4.14-7. Pitchlock Drive. 
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the rotating outer portion of the ring to the propeller hub. In the lower 
part of the same figure the tube can be seen that supplies warm, filtered 

purge air from the engine to the slipring. 

within the ring and protects the interior reflective surfaces from contami- 

nation by the environment in the area of the slipring. 

This air prevents condensation 

Figure 4.14-8 shows a cross section of the slipring. The labyrinth seals 

which contain the purge air are clearly visible as are the cylindrical reflec- 

tive surfaces and the counterbores for the fiber bundles and lenses. The 

operation of the ring is best understood by referring to Figure 4.14-9 which 
schematically shows how the reflective patterns cross the rotating boundary. 

The light signal is injected at an angle through a hole in one cylindrical 
reflective surface and it is repeatedly reflected until it exits through 

a similarly angled hole in the opposite reflective surface. 
schematically represents a slipring cross section showing the three pairs 

of transmitter and receiver ports on the inner (stationary) ring and the 
four pairs of ports on the outer (rotating) ring. 

figure it can be seen that for any relative angular position of outer ring 

to inner ring there are always three channels in communication. This situa- 
tion prevails both for transmission radially outward (sending signals to 
the propeller) and transmission radially inward (receiving signals from 
the propeller). 

Figure 4.14-10 

By an examination of the 

There is a modulation loss in the slipring which is a function of the 

reflection pattern. This pattern is in turn a function of the geometry of 

the slipring and the aperture of the light source. Figure 4.14-11 shows 
three examples of reflection patterns. The ratio x/d (spot spacing to spot 
diameter) is referred to as the lateral offset ratio. Figure 4.14-12 is a 

curve of modulation loss versus lateral offset ratio. 

A further loss exists in the ring that is a function of the number of 
reflections required before the signal passes through the ring. This is a 
function of the circumferential length between the launching, or source port 
and the exit, or receiver port. This length depends on the angular position 

of the rotating portion of the slipring. 
loss versus angle for all three active channels for a slipring of assumed 
dimensions. 

Figure 4.14-13 is a plot showing the 
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Ring 

Inner 
Ring 

Figure 4.14-8. Cross Section of Optical S l ipr ing .  

Transmitter 4 

Figure 4.14-9. Schematic of Sl ipr ing .  
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Figure 4.14-10. On-Axis View of Slipring. 

Source 
Rehction 

“dA Detector %/’ 
Pattern 

( X l  = d) 

(x2’ dl 0 0 0 0 0 e) 0 0 

Figure 4.14-11. Source Reflection Patterns. 
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Slip-Ring 
Reflection 

Losses 
(db) 

Modulation 
Loss 
(db) 

Sounr Pattern I 

0 0.5 1 .o 1.5 2.0 
Lateral Offset Ratio 

I I LOSS = -1oLoga 

Figure 4.14-12. Modulation from Source Pattern.  

Angular Rotation of Slip-Ring (Degrees) 
0 120 150 

Assumptions: Loss = 0.1 db Per Reflection 
Slip-Ring Dia. = 430 mm 
Source and Detector Lens Dia., d = 8 mm 
Source Pattern Lateral Offset, x = 6 mm 

-14 -12 t 

Figure 4.14-13. S l ipr ing  with  3 Source Fibers and 4 Detector Fibers .  
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Some deterioration of the slipring with time may be expected principally 

Several features have 
Condition monitoring 

due to deposits on the reflective surfaces and lenses. 

been incorporated to successfully cope with this trend. 

can be used to track the rate of deterioration. A signal of known strength is 

launched into the fiberoptic bundle and the perceived strength of this signal 

as seen by the electronic control is reported back as health information. 
comparison is made and the data is stored for trending purposes. 

can be made as to when corrective action should be taken. 

A 

A projection 

As mentioned previously, the ring is pressurized with warm, filtered 
engine bleed air. 
may be laden with contaminants. 

This prevents condensation and infiltration of air which 

The ring is also equipped with washout ports that permit the ring to be 
flushed with an agent to enable it to be cleaned without diassembly or 

removals. 
easy ring removal and replacement without disturbing the propeller. 

Lastly, the ring is constructed of three segments, which permit 

Performance estimates of the optical slipring are given by Tables 4.14-2 
and 4.14-3. 

4.14.6 Traction Drive Module 

The reduction unit chosen for the pitch change mechanism is a traction 

drive device which has multiple rows of smooth rollers in contact which 
transfer the power to adjacent rollers utilizing friction, or elastohydro- 

dynamic traction as it is more properly termed. 
drive that especially suit it to this application are: 

The benefits of the traction 

0 High reduction ratio in a single unit 

- 101:l ratio for the dual bevel PCM design 
- 21O:l ratio for the ballscrew PCM design 

0 Axially compact 

0 High efficiency for the ratio--94% 

0 Ability to run with marginal grease lubrication 

Very high torsional stiffness 
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Table 4.14-2. Performance Estimate. 

I Expocted Worse C a r  

SyrtenlLorms 

- conmcton(2) - Optlul Fikr Link (2) - L m ( 2 )  - Pholodlod.coupling - O p t M  SUP Ring - Mlullgnmmt in SHp RIng 

- S o u m t ~ - F l b ~  

- TOW S- Lo88 

-294 db 
-20 db 
9.ozdb 
-24 db 
9.1 db 
-10 db 
-3 db 

-20.48 db 

-3.5 db 
-3.0 db 
9.03db . 
-3.0 db 
9.2 db 
-15 db 
-5 db 

-29.73 db 

Table 4.14-3. Performance Estimate. 

System Loss = 10 Log (P in/P out) 

Signal Current = Is = PoutR 
Signal-to-Noim = SNR = 10 Log (I&) 

(1 1 
(2) 
(3) 

Expocted wont case 
system Lou 20.48 db 29.73 db 

2.4 MN 2.0 YN Pin 
R 0.5 Nw 0.45 AM 

1 nA 1 nA Id 

0.95 pA 
pout 
IS (F- 2) 10.6 pA 
SNR (From 3) 40.3 db 16.8 db 

(From 1) 21.6 pW 2.1 pw 
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0 Zero backlash 

0 High r a t i o  of ou tput  to rque  t o  weight 

0 Low torque r i p p l e  

0 Clean room, sea l ed ,  assembly 

The c reep ,  which r e p r e s e n t s  about a 2% speed l o s s  a t  f u l l  t o rque ,  asso- 

c i a t e d  wi th  t r a c t i o n  d r i v e s  i s  not  a problem i n  t h i s  a p p l i c a t i o n  and i t  does 

not  degrade t h e  system performance i n  any way. The 210:l  r a t i o  d r i v e  i s  

termed a hybr id  t r a c t i o n  d r i v e  as it combines g e a r s  wi th  r o l l e r s  a s  i t  has  

geared p in ions  d r i v i n g  an output  gear  i n  t h e  f i n a l  s t a g e .  

shows an end view of t h e  hybr id  u n i t  and F igu re  4.14-15 shows a c r o s s  s e c t i o n .  

This  u n i t  i s  cons t ruc ted  as a module, and as such i t  can be removed v i r t u a l l y  

i n t a c t  from t h e  PCM assembly. 

F igure  4.14-14 

4.14.7 E l e c t r i c a l  Machinery 

4.14.7.1 Motor Design 

Table 4.14-4 shows t h e  cho ices ,  and c h a r a c t e r i s t i c s  of each cho ice ,  con- 

s ide red  f o r  types of motors and g e n e r a t o r s .  The one s e l e c t e d  f o r  t h i s  s tudy  

was t h e  permanent magnet synchronous des ign  because i t s  advantages make i t  

p a r t i c u l a r l y  well s u i t e d  t o  t h i s  a p p l i c a t i o n  and because t h e  technology i s  

w e l l  developed. F igure  4.14-16 shows a c r o s s  s e c t i o n  of t h i s  type of machine. 

Another very a t t r a c t i v e  motor type  i s  t h e  switched r e l u c t a n c e  motor,  a 

c r o s s  s e c t i o n  of which is  shown by Figure  4.14-17. Table  4.14-5 shows some of  

t he  r ecen t  advances t h a t  make AC d r i v e s  more compet i t ive  wi th  o t h e r  s y s t e m s .  

Table 4.14-6 l i s t s  some of t h e  f a c t o r s  a f f e c t i n g  motor des ign .  Table  

4.14-7 l i s t s  the v a r i a b l e s  of motor s c a l i n g  and g ives  t h e  c h a r a c t e r i s t i c s  of 

t h e  motor s e l e c t e d  for t h e  PCM a p p l i c a t i o n .  Note t h a t  a t  t h e  t i m e  t h e  

mechanical d r i v e  f o r  t h e  PCM was designed t h e  optimum motor was thought t o  be 

a 20,000 rpm.design and so t h e  gea r  r a t i o s  were s e l e c t e d  accord ingly .  

e f f o r t s  a t  opt imizing the  motor des ign  produced t h e  40,000 rpm machine, which 

i s  smaller, l i g h t e r ,  and less c o s t l y .  

made, a s tudy  ind ica t ed  t h a t  t he  s y s t e m  would be more a t t r a c t i v e  wi th  the  

Fur the r  

Although a new d r i v e  des ign  was n o t  

I 
I 
3 
I 
I 

1 
I 
I 

I 
I 
8 
1 
I 
I 
I 
8 
I 
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I--------- \ 

Toothed Pinions 
and Ring Gear 

Canicr Frame 
stnrcture 

- Input Sun Roller 

Figure 4.14-14. Traction Drive Arrangement for  210:l Ratio. 
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Retaining Rings 

and Pinions (5) 

First Row Rollers (5) . 

Emergency Feather 

Second Row Rollers (5) 

Figure 4.14-15. Traction Drive Arrangement for 210:l Ratio. 
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Table 4.14-4. APET PCM-Motor/Generator Choices. 

(Only Brushless Machines Considered) 

Motor 
0 Induction - Standard TWhnology - Complex Control 

- High Efficiency - Simplified Control - WldeSpeedRange - High Power Factor 

- LowCost - No Magnets  or Rotor Conducton - Rslkbility 

0 PM Synchronous 

0 SwitchedRductance 

0 Cooling 
0 lnruktkn - wlck Speed Range - NO T ~ p ~ n h i m  Effect8 - Fewest Power Semiconductors (3 Instead of 6) - Well Suited for DC Power Supply 

Generator 
0 PM - Short-Circuit Protection With Co-Sm - High Power Density 
0 Induction Alternator - Not Recommended 
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statorcon \ 

Rotor 
Pole 

(b) Stator Windings ’ 

Figure 4.14-16. Basic I n t e r i o r  PM Synchronous Motor. 



- Pole Winding OF FOG!? 

Stator 
Poles 

7. 

or ' stat1 v 
Figure 4.14-17. Basic Switched Reluctance Motor. 

Table 4.14-5. Recent Technological Advances Important for AC Drives. 

Advance 

1. Invention of Insubted GateTmnsi8tom 

3. Dheoraq of Neodymium Iron Plllrunent M-MI 
Material 

4. Deva(opmant of Switched Reluctance Motor 

5. VLSl and Advanced Mkroconlrollm 

6. Av.H.MtHy of Hlgher-Power Bipolar Transhlon 
and MOSFET'S 

Reason for Its Impoftance 

ReducIlon In Paris Count .nd Over8ll Simpliflerlion of 
Gah or Base Drlve ClrcuHs for High Power 
semlconductord.rkr 
Reduelion In Pads Count md Overall Simplification of 
Inverter Cireuitr; Eliminallon of Auxilhy Circuits for Forced 
Commutation. 
May Lead to lhe Feasibility 01 Hlgh Power Surface- 
Magnet Molon Having Low lnvcrter kVA Requirement Also lo 
Low-Cost, Hlgh-PertonIUnce interlor-Magnet PM Molon. 
Completely New Motor/Cmrtar System Wllh Potential for 
Hlgh Effkkncy, bull Inverter Ske and Low Cost. SR System 
nd lb D.rlr.tlm Have a Wid. Range of P0tenti.l 
Appllea(kn8. 
Permit Sophistlealed Control Systems to be Implemented at 
Low U n H  Cost; Pouibly EnMlng a Wider Use of Advanced 
Control Cancepts lncludtng Adapllve Algorithm. Also to 
Pemll the Oevelopmanl of Improved Feedback and Sensing 
of Motor Pmnwtem. 
I W n m  th. R m  of Applbbillly of Pulse-WidIh 
Modulath Techniques for Induction Motor Drives: Facililales 
(he Rapid Development of Technoiogy for PM and SR Drive 
Systems. 
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Table 4.14-6. Motor Design. 

Maximum Motor Speed (rpm) is Determined by: - Maximum Switching Frequency (Less Than 300 H t )  - Iron Losses (Start to Reduce Flux Density Around 3000 Hz)  - Maximum Bearing Speed (DN) (Good Bearing Fundamentals) - Rotor Stresses (140,000 psi Maximum) - Rotor Dynamics (System Response Concerns) 
0 Permanent Magnet Motor (Evaluated In Most Detail) 

0 Motor Rating Can Be Influenced by Inverter Selection - Force Commutated Inverter Allows Motor Operation at Its Lowest Possible 

- Also Requries Less Magnetic Material Than a Load Commuatated Inverter - Both 4-Pole and 2-Pole Designs Can Meet Design Criteria. - Operating The Motor at Constant Power Over a Wide Speed Range 

Rating 

(Mandates a Force Commutated Inverter) 

Switched Reluctance Motor (Merits Further Evaluation) - Half The Number of Power Semiconductor Devices - No Magnets or Rotor Winding - Simple Torque Control 

Table 4.14-7.  Motor Scaling. 

0 Variables Are: Speed (rpm)-Range From 20,000 to 60,000 rprn (60,000 rpm was 
dropped-Inconsistent With Stress Limits for the Diameters That are Practical) - Number of Poles - Range From 6 Poles to 2 Poles Was Evaluated 

- RatedPower 24 KVA - Stator Diameter 4.36 Inches - Stack Length 1.84 Inches - Frame Diameter 4.76 Inches - Motor Length 4.50 Inches - El. Mag. Weight - Motor Weight 10.50 Ibs. 

0 Motor Selected Is a &Pole Design @ 40,000 rpm 

0.70 Ibs. 



higher speed motor as the drive could accommodate the additional ratio with- 

out much penalty. I electrical machinery. 

A l l  the figures of the PCM show the envelope of the larger 

1 

4.14.7.2 Generator Design 

The selected generator was scaled from an existing machine. Table 4.14-8 
gives the characteristics of this larger, parent machine. Table 4.14-9 shows 
the scaling factors and gives the characteristics of the generator selected 

for the advanced PCM. Again the speed increaser was designed when a 20,000 
rpm generator was thought to be optimum but further work indicated the 30,000 
rpm machine was t o  be preferred. 
more desirable PCM as the speed increaser can also accommodate the higher 

ratio with little penalty. 

This higher speed machine would produce a 

4.14.8 Controls 

Figure 4.14-18 shows a control schematic for the all-electric PCM. 
schematic as drawn is designed t o  be illustrative rather than depict actual 
intended hardware, as, for example, the schematic shows a DC link whereas the 
power conversion would more likely be handled by a cycloconverter type of 

device. 

The 

As can be seen from the figure, there is two-way communication across the 
optical slipring. The blade angle resolver produces blade angle information 

which is transmitted back to the stationary propulsion system FADEC for ulti- 

mate cockpit display. Health data for condition monitoring and trending is 
also transmitted in this same direction. All other information is transmitted 

to the rotating assembly for normal or emergency operation of the propeller or 
for checkout. 

One very important benefit of this type of PCM is its capabili.ty of con- 
tinued near-normal operation in the event of a propeller control failure or of 

communication failure. 

wards across the rotating boundary at the stationary portion of the system 

and is therefore capable of supplying a signal proportional to propeller speed 

The in-hub speed sensor is continually looking rear- 
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Table 4.14-8. Generator Design. 

0 A Base Machine For Scaling Was Selected From An Existing PM-Generator For a 60 

0 Characteristics 

kVA VSCF System 

- System Rating of 60 kVA In the Generator Speed Range of 15-30,000 rpm - Electro Magnetic Dimensions for Generator 
0 RotorOD 5.0 Inches 
0 StatorOD 6.05 Inches 
0 StackLength 4.75 Inches 

0 59A @ 155V and 0.76 PF (Continuous) 
0 110A @ 145V and 0.72 PF (For 5 Seconds) - The Continuous Generator Rating Amounts to 82.3 kVA 

- Electrical Rating of Generator (9 Phase) 

VSCF = Variable Speed, Constant Frequency 
OD = Outside Diameter 
PF = Power Factor 

Table 4.14-9. Generator Scal ing.  

0 Considerations: - rpm (Range From 15 to 30,OOO) - Rotor Dimensions - Stack Length, Shrink Ring 
@ - Number of Poles - 8 to 6 
@ - Frequency - 750 Hz to 1500 H t  - Weight of Electromagnetics - Total Weight 

@ Pole Number is Selected by Pole Pitch for Manufacturing Reasons 
@ Resulting Frequencies Also Influence Rectifiedlnverter Design 

The 30,000 rpm Machine is shorter at the same diameter 
The Bearing System Has Been Built and Demonstrated 

0 The Selected Generator (Force Commutated Inverter) 
Rating 25 kVA @ 0.922 PF, 30,000 rpm, 1500 Hr 

0 Dimensions 
- Frame Diameter - Frame Length - Total Weight 
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4.76 Inches (Same as Motor) 
5.09 Inches 
13.1 Ibs. 
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t o  t h e  r o t a t i n g  log ic  u n i t .  I n  t h e  event  of  a s t a t i o n a r y  c o n t r o l  o r  communi- 

c a t i o n  f a i l u r e ,  the c e s s a t i o n  of proper  s i g n a l s  t o  t h e  r o t a t i n g  l o g i c  u n i t  

would be  s u f f i c i e n t  t o  cause the system t o  r e v e r t  t o  a backup o r  d e f a u l t  mode 

of ope ra t ion .  I n  t h i s  backup mode t h e  s i g n a l  from the in-hub senso r  would be 

compared t o  t h a t  of a preprogrammed de i r e d  c o n s t a n t  p r o p e l l e r  speed and t h e  

speed or e r r o r  would be used t o  a d j u s t  b l ade  p i t c h  t o  c a n c e l  t h e  e r r o r .  Syn- 

chrophasing might be l o s t  b u t ,  i f  so, t could  be r e -e s t ab l i shed  by ass ign-  

i n g  t h e  engine  ope ra t ing  i n  t h e  backup mode as t h e  master and p e r m i t t i n g  t h e  

engine wi th  normal o p e r a t i o n  t o  assume t h e  s l a v e  r o l e .  

4.14.9 Lubr ica t ion  and Coo l ing  

The e l e c t r o n i c  c o n t r o l  module, l o c a t e d  a t  t h e  extreme forward end of 

t h e  p r o p e l l e r  assembly, i s  a i r  cooled.  An i n l e t  i s  provided i n  t h e  t i p  of 

t he  sp inne r  t o  capture  ram a i r .  Th i s  a i r  is ducted  t o  t h e  c o n t r o l  module and 

provides  t h e  necessary  coo l ing .  A i r  e g r e s s  passages are provided i n  t h e  

l a r g e  d iameter  por t ion  of t h e  sp inne r  s h e l l .  Because of t h e  e x i t  h o l e s  being 

loca ted  a t  a large r a d i u s  and t h e  en t r ance  be ing  on t h e  c e n t e r l i n e ,  t h e  ro t a -  

t i o n  of t h e  p r o p e l l e r  a i d s  i n  pumping coo l ing  a i r f l o w .  

The a l t e r n a t o r  r o t a t e s  con t inuous ly  a t  h i g h  speed and t h e r e f o r e  i t s  bear-  

i ngs  are provided w i t h  p r e s s u r i z e d  o i l  which i s  supp l i ed  through a channel  i n  

t h e  h igh  speed d r i v e  s h a f t .  Th i s  same o i l  i s  used t o  l u b r i c a t e  t h e  speed 

i n c r e a s e r  and bear ings  i n  t h e  emergency f e a t h e r i n g  mechanism. I n  a d d i t i o n  t h i s  

o i l  i s  used f o r  cool ing  both  t h e  motor and a l t e r n a t o r .  S u i t a b l e  channels  a r e  

supp l i ed  f o r  cool ing  purposes i n  both t h e  motor and a l t e r n a t o r  s t r u c t u r e s .  No 

s e p a r a t e  system is provided f o r  t h e  scavenging of t h i s  l u b r i c a t i n g  and coo l ing  

flow as t h e  u s e d  o i l  i s  s p i l l e d  i n t o  t h e  bore  of t h e  gearbox ou tpu t  s h a f t  and, 

u l t i m a t e l y ,  t h i s  o i l  j o i n s  t h e  main gearbox l u b r i c a n t ,  and i s  scavenged by t h e  

gearbox s y s t e m .  

4.14.10 E f f i c i e n c y  and Heat Re jec t ion  

4.14.10.1 Mechanical E f f i c i e n c y  

The t r a c t i o n  d r i v e  as used i n  t h e  f i n a l  des ign  (210: l  r a t i o )  has  an e s t i -  

The e f f i c i e n c y  of t h e  e n t i r e  d r i v e  s y s t e m  downstream mated e f f i c i e n c y  of  94%. 
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of t h e  motor ,  i nc lud ing  t h e  t r a c t i o n  d r i v e  and t h e  ba l l s c rew and l i n k s ,  i s  

ove r  90%. 

4.14.10.2 E l e c t r i c a l  E f f i c i ency  

Figure  4.14-19 shows t h e  f u l l  power e f f ic iency . ,  l o s s e s ,  and how t h e  l o s s e s  

va ry  w i t h  c u r r e n t  and v o l t a g e  of  t h e  motor, a l t e r n a t o r ,  and i n v e r t e r .  I n  sum- 

mary, a t  f u l l  load 33.1 hp  e n t e r  t h e  a l t e r n a t o r  and 26.4 hp i s  produced by t h e  

motor.  

It should be  noted t ha t  the motor i n  t h i s  i n s t a l l a t i o n  has a very  unusual 

du ty  c y c l e  f o r  an e l ec t r i c  machine. During synchrophasing o p e r a t i o n ,  which 

r e p r e s e n t s  t h e  m a j o r i t y  of t h e  m i s s i o n  t i m e ,  t h e  motor i s  e s s e n t i a l l y  oper- 

a t i n g  s t a l l e d  a t  near  f u l l  to rque  as it i s  moving on ly  a few r e v o l u t i o n s ,  or 

f r a c t i o n s  o f  a r e v o l u t i o n ,  as necessary t o  achieve  synchrophasing.  This does 

not  r e p r e s e n t  a problem f o r  a proper ly  designed machine as t h e  l o s s e s  at t h i s  

c o n d i t i o n  are less than the f u l l  power losses. What is demanded i s  a motor 

coo l ing  scheme that  is independent of motor speed,  as i s  provided h e r e  with 

o i l  coo l ing  f o r  bo th  the motor and a l t e r n a t o r .  

The p r o p e l l e r  having t h e  master r o l e  i n  synchrophasing would have much 

l e s s  a c t i v i t y  than  t h e  s l a v e  p rope l l e r  as t h e  master s y s t e m  h a s  on ly  t h e  j o b  

of modulat ing b lade  p i t c h  t o  run cons tan t  speed, a much less demanding t a s k  

than  matching b l ade  phase w i t h  the  master.  

4.14.11 F a i l u r e  Modes and E f f e c t s  

A very  important  a t t r i b u t e  of t h i s  advanced PCM i s  i t s  a b i l i t y  t o  produce 

useab le ,  c o n t r o l l a b l e  t h r u s t  i n  t h e  event of a s i n g l e  s e r i o u s  f a i l u r e ,  o r  even 

i n  t h e  event  of combinat ions of  f a i l u r e s .  Most competing s y s t e m s  would r e q u i r e  

t h a t  t h e  a f f e c t e d  p ropu l s ion  system be shu t  down and t h e  p r o p e l l e r  f e a t h e r e d  

i n  the event  of similar f a i l u r e s .  Tables 4.14-10 and 4.14-11 l i s t s  p o s s i b l e  

f a i l u r e s  and t h e i r  e f f e c t s  on opera t ion .  
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1.1 KW 
10% of Losses  Constant 
10% Vary With E 
80% Vary With I 

2.2 KW 
Losses Vary With I2 

1.7 KW 
30% of Lo- Constant 
70% Vary With I2 

A 

19.7 KW 
(26.4 HP) 

&4 
Alternator 
v + =  

(33.1 HP) 

Figure 4.14-19. Full Power Losses. 
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4.14.12 Reliability, Cost, and Weight 

Table 4.14-12 compares the advanced electric PCM with a current hydraulic 
The first generation advanced electric system is very competitive in 

The situation here may soon change to the 
system. 
all areas except acquisition cost. 

advantage of the electric system as the enabling technology in motors, con- 

trols, power switching devices, and optics is progressing at a very rapid rate 
and significant reductions in cost of components utilizing these technologies 

may be expected. 

Table 4.14-12. Propfan Summary. 

0 Reliability - MTBUR, Propfan Assembly 
(Chargeable) - Hours - Mean Time Between All 
Maintenance Actions 
(All Causes) - Hours 

0 Maintenance Cost 

0 Acquisition Cost 

0 Weight 

Pitch Control Technology 

Cunent 

18,400 

2,700 

Base 

Base 

Base 

Advanced 

18,800 

3,580 

-1 1 % 

+ 1 0% 

-5% 

Base Is Defined as the Offset Gearbox System Presented In the GE APE1 Contract 
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4.15 RECOMMENDATIONS FOR TASK V I 1  AND VI11 

Some preliminary recommendations for the gearbox development effort have 

already been included in 4.12.11 and now need amplification. 
Mechanism (PCM) of Task VI11 has not yet been covered and is therefore fully 

described in this section. 

The Pitch Change 

4.15.1 Advanced ProDfan Gearbox 

Subsequent to the recommendations in 4.12.11, the design effort to take 

the gearbox from a "conceptual" current technology standard to a "preliminary" 

design standard for the early 1990's time period has resulted in some notable 

changes although the basic concept of an "in-line" star configuration has not 

been superseded. 

Noteworthy changes include : 

0 A four star layout veraus a three star has been selected. 

0 A fabricated titanium housing rather than one cast in aluminum aiioy 
is now proposed. 

0 The integration of all gearbox "services" into the basic design 
layout has been accomplished. 

0 More attention to modularity has been paid. 

0 A thermally controlled lubrication supply, whereby oil flow is 
metered as a function of torque applied is the selected system 
concept . 

0 More detailed efforts in system integration with both the propfan, 
its pitch change mechanism, and the design of the enclosing nacelle. 

A number of the component elements already given in 4.12.11 need not be 

repeated €or this amplified program definition, and these elements still apply 

to the gearbox designed in Task VII. 

The emergence of through and case-hardened M50 NIL material for toughness 

in antifriction bearing applications would indicate that some additional mate- 

rials should be investigated for the power gearsets. First by Ryder type gear 
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tests and second in 
mended that the M50 
aerospace gearing. 

some existing power gear setup. It is definitely recom- I 
NIL material be critically evaluated for possible use in 

I 
Improvements that are being constantly made in both Finite Element and 

Dynamic Modeling suggest that some significant efforts, using these modern 
tools, should be made to theoretically compare with the empirical results from 

test rigs. The effects of friction and wear must also be countered using the 
best data available from the tribological experts - particularly where 
elevated gear blank temperatures, modulated lubrication flow, a more advanced 
lubricant chemistry with additives, are all to be explored in both component 

and full-scale test programs. 

Also considered important, but not a part of the recommendations for the 
in-line gearbox, is the development of a technology data base for conformal 
gears. This type of gearing is strongly recommended for a high-stage-ratio, 

single gearset, for a 12,500 SHP gearbox with offset geometry. 
layouts of single row propfans are better served with propulsion systems using 

offset gear arrangements, then the technology inherent in conformal gearing 
could play a dominant part in the overall picture. 

If airplane 

The program elements for the in-line gearbox development are included as 

Table 4.15-1. These are further broken down in Table 4.15-2 which defines the 
tasks for mechanical design and system analysis. 

Table 4.15-3 describes the hardware required for the test programs and 

Table 4.15-4 indicates the technical areas which would most probably require 

some outside vendor support. 

Tables 4.15-5 and 4.15-6 indicate the component and full-scale tests re- 

quired, while Figure 4.15-1 gives the program overall schedule. 

4.15.2 Pitch Change Mechanism 

A 3-year technology program has been laid out which would accomplish 
NASA's primary objective of establishing a solid foundation for an advanced 
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Table 4.15-1. Program Elements. 

0 Mechanical Design 

0 System Analyses 

- StressJDeflect ions - Vibration - Lubrication 
- Finite Element Modeling 

0 Pr oc ur e hardware 

0 Outside Contractors Coordination 

0 Bearing and Gear Component Tests 

0 Full-scale Back-to-Back Rig Test 

Table 4.15-2.  Mechanical Design and 
System Analyses. 

Program Elements 

Select Design Configuration 

Prepare Detail Drawings 

Analysis - Stress, Finite Element 
Outside Vendor Coordination 

Engineering Coverage During Manufacture 

Component Tes t Cove rage 

Full-scale Test Coverage 

Documentat ion 
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Table 4.15-3. Hardware Requirements. 

1 1 
0 3 Complete Gearbox Assemblies Plus Spares - Gears, 

Shafts Bearings. 

I 0 Bearings and Gears for Component Tests (3 or 4 Gearsets 
with Modified Profiles). 

Table 4.15-4. Outside Vendor Participagion. 

0 Mounts Design and Analysis 
0 Mounts Hardware 
0 Input Driveshaft, Couplings, Torque Tube 
0 Condition Monitoring Instrumentation 
0 Test Rig Instrumentation 

Table 4.15-5. Bearing and Gear Component Tests. 

* Bearings 

- Planet/Star or Idler Bearings 
- Include Gear Mesh Separating Load Effects 
- Equivalent Loading 
- Determine Stability at Various Cooling Rates 
- 
- Endurance Test 

Gears" 

- Single Mesh Testing 
- Scale Size of Test Gears (To Be Determined) 
- Determine Scoring Characteristics (Materials) 
- Determine Heat Rejection Versus Load 
- Load Endurance 

Determine Heat Rejection Versus Load 

Assumes a Single Lubricant Has Been Selected. * 



Table 4.15-6. Ful l -Scale  Back-to-Back Rig Test. 

0 

0 Minimum Tes t ing  Required 

- Four Test Sequences 
- Inspec t ions  a t  I n i t i a l  Assembly/Teardown 
- In te rmedia te  Inspec t ions  as Required by t h e  T e s t  P lan  
- I n i t i a l  Checkout 
- "Tes t  Plan" t e s t i n g  (4-500 Hours) 
- Torque Tes t ing  Only 
- Measured Delect ions 

Addit ion of Prop Load Test ing i s  a Program Option 

New 4 Square Rig F a c i l i t y  

0 

pnlhinrll 
0.rign 

M Y *  
D e w  Drawing 

Procure Hudwvr 

ouwda vendor 
Contracts 
Comporrmt Tests 

Bxk-t*B.ck 
TWtS 

Rig Derign and 
Procurement 
Test Pian 
Testing 

1 '  

Figure  4.15-1. Overall Timing and Key Mi les tones .  
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electromechanical  PCM c o n t r o l l e d  by a f i b e r o p t i c ,  d i g i t a l l y  encoded, d a t a  

l i n k .  

i n t r i n s i c  components and modules wi th  a f u r t h e r  1-year e f f o r t  t o  complete both 

s t a t i c  and dynamic tests. 

geared t o  t h e  genera t ion  of a technology base  i n  t h a t  no propfan b lade  a c t i v i -  

t i e s  a r e  warranted or included i n  t h e  p l a n  a l though,  o f  n e c e s s i t y ,  a p ro to type  

o f  a f l i gh t - type  propfan hub would be r equ i r ed .  

The program inc ludes  2 yea r s  of  des ign  and manufactur ing e f f o r t  on t h e  

It i s  emphasized t h a t  t h e  program i s  s t r i c t l y  

There are a number of  module u n i t s  which can  be developed independent of 

each o t h e r  and sub jec t ed  t o  a p p r o p r i a t e  component tests p r i o r  t o  being 

assembled i n t o  a complete hub mechanism. 

t h e r e  can be ongoing e f f o r t s  t o  des ign  and manufacture t h e  hardware and s l a v e  

d r i v e s  t h a t  w i l l  be  needed dur ing  t h e  3rd  y e a r ' s  t a s k s .  i . e . ,  complete s y s t e m  

checkout.  

Also, i n  p a r a l l e l  wi th  t h i s  a c t i v i t y  

F igu re  4.15-2 i s  an overview of  t he  PCM development recommendations. 

B a s i c a l l y ,  what i s  foreseen ,  are requirements  i n  t h r e e  main areas:  

0 Mechanisms 

0 Electrical  (and e l e c t r o - o p t i c a l )  

Spec ia l ized  tes t  r i g s .  

F igu re  4.15-3 shows a 3-phase program f o r  t h e  r equ i r ed  f i b e r o p t i c  technology.  

Note t h a t  Phase 1 concen t r a t e s  on t h e  problems t h a t  must be so lved  i n  the  

success fu l  execut ion of t h e  des ign  and development of  t he  low n o i s e ,  o p t i c a l  

s l i p r i n g .  Phase 2 c o n t r i b u t e s  a l abora to ry  pro to type  f o r  bench t e s t i n g  and 

Phase 3 c o n t r i b u t e s  a "developed" l abora to ry  pro to type  which can be used i n  

t h e  ensuing fu l l - sca l e  r i g  program. 

F igu re  4.15-4 d e s c r i b e s  t h e  e f f o r t s  needed t o  add a n  o p t i c a l  d a t a  l i n k  

f o r  an engine FADEC u n i t .  

and r e c e i v e r  of o p t i c a l  d a t a .  

tes t  of an  e x i s t i n g  FADEC s u i t a b l y  modified f o r  t h e  o p t i c a l  r o l e .  

would a l s o  play a p a r t  i n  t h e  ensuing f u l l - s c a l e  r i g  program. 

Note t h a t  t h e  converted FADEC i s  both  a t r a n s m i t t e r  

These e f f o r t s  cu lmina te  wi th  a "brassboard" 

This u n i t  

F igu re  4.15-5 r e p r e s e n t s  t h e  key i t e m  development f o r  t h e  e l e c t r i c a l  

machinery. Both the  motor and t h e  a l t e r n a t o r  a r e  t o  be designed and manufac- 

t u red  t o g e t h e r  with a compatible  c o n t r o l  system. Like t h e  prev ious  technology 
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Mechanisms - Clutch and Speed Increaser, Input Shaft, Module - Traction Drive, 210 to 1 Stage Ratio, Module - Duplicate Ball Nut* and Ball Screw, Recirculating Type, 

- Torque Limiter, Pitch Locks, Modules - Pitch Links, Individually Balanced and Replaceable 

- Motor and Generator, Oil Cooled, 30-40,OOO rpm, Modules - Servomotor for Pitch Locks, Module - Alternator, Power Conditioning, Module ** - FADEC Signal Generating, Electronic Optic, Module - Optical Slipring, With Purge System, Module - Ground Operating, Power Supply, Module 

Module 

Electrical 

All the Above to be Rig Tested, Individually, and as an Assembly 
With Fullscale Loading 

Redundant 2 Track Design 
** Includes Optic to Electronic Converter. Is Air Cooled 

Figure 4.15-2. Development Plans and Recommendations - PCM. 
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3 Phases 
Phase1 - Mirror Surfaces, Select Materials, Evaluate by Test - Select Components for Data Link, Evaluate by Test - Select Data Transmission Protocols, Including Redundancy - Verify Signal-to-Noise Ratio - Verify Operation in Adverse Conditions (Contamination) 

- Design, Manufacture, Test a Laboratory Prototype System 
Phase2 

Including an Optical Slip Ring 
Phase3 - Design, Manufacture, Test a Developed Laboratory 

Prototype Yean 
0 Quarten 1 Quarten 2 

Tlme Table 

Figure  4.15-3. Turboprop P i t c h  Change Mechanism F i b e r o p t i c  Technology 
Program. 
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Program Objectives 
1) Define a FADEC That Controls Both the Shaft 

Engine and the Propeller With Fiberoptic Data 
Links 

2) Define the Converters - Electronic to Fiberoptic 
and Vice Versa (FADEC Both Transmits and 

3) Determine Communication Logic - Pulse 
Width Modulation Versus Frequency 
Modulation 

4) Test a Brassboard System Based on Modifying 
an Existing FADEC Unit 

. Receives Fiberoptic Data) 

Flnt Year Second Year 

1 ,53 

Figure 4.15-4. FADEC Technology Program. 
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1) 0 Select Motor Type and Generator Type (Trade Studies) 
2) 0 Select and P.D. Control Circuits (Trade Studies) 
3) 0 Design Electric Machinery and Control Module 
4) 0 Assemble Breadboard Control and Test (Inc. Heat Rejection) 
5) 0 Manufacture Machinery and Brassboard Control 
6) Test Machinery and Control 
7) 0 Participate in Fullscale PCM Testing, Modify as Required 

Yean 
0 1 2 

1 

2 

3 
4 

5 
6 

7 

Figure 4.15-5. Turboprop Pitch Change Mechanism Electric Motor/Generator 
Technology Program. 
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items, t h e  e l e c t r i c a l  machinery i s  first t e s t e d  as a modular se t  of components 

be fo re  being committed t o  t h e  t e s t  program on the  f u l l - s c a l e  r i g .  

F igu re  4.15-6 d e l i n e a t e s  a l l  the necessary  s t e p s  t h a t  must be taken  t o  

des ign ,  manufacture,  and component t e s t  a t r a c t i o n  d r i v e  with a 210:l reduc- 

t i o n  r a t i o .  S i m i l a r l y  t o  t h e  o t h e r  modules i t  a l s o  f i n d s  i t s  way e v e n t u a l l y  

t o  t h e  f u l l - s c a l e  r i g  t e s t  program. 

F igu re  4.15-7 o u t l i n e s  t h e  necessary hardware t h a t  must be des igned ,  

manufactured, and supp l i ed  by Hamilton-Standard i n  support  of t he  f u l l - s c a l e  

test  r i g .  Na tu ra l ly ,  t h e s e  major components must be i n t e g r a t e d  i n  form and 

func t ion  wi th  t h e  remainder of t h e  modules which are a l s o  h i g h l i g h t e d  i n  t h i s  

f i g u r e .  

F igu re  4.15-8 addres ses  the  design and manufacture of a s p e c i a l i z e d  t e s t  

s t and  which w i l l  be r equ i r ed  t o  provide t h e  d r i v e  and loading  i n  t h e  f u l l -  

scale r i g .  F igu re  4.15-9 summarizes t h e  t o t a l  e f f o r t  r equ i r ed  from f u l l - s c a l e  

r i g  t e s t i n g  which is  e s t ima ted  t o  r equ i r e  about  a l-year e f f o r t .  

Costs  f o r  implementation of the t o t a l  PCM program have been provided t o  

NASA under s e p a r a t e  cover .  
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Figure 4.15-7. Turboprop P i t c h  Control  Technology Program. 
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Figure  4.15-8. Turboprop P i t c h  Con t ro l  Technology Program. 
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5 .0  CONCLUSIONS 

The General E lec t r ic  f i n d i n g s  from t h e  APET s tudy  are p o s i t i v e ;  t h e  f u e l  

burns  o f  t h e  APET a i r p l a n e s  have been q u a n t i t i e d  between 300 and 1000 N . M i  

ranges  wi th  payload f a c t o r s  of  100% and 65%.  

t h e  s tudy  t o  ensure  t h a t  c o n s i s t e n t  a i r p l a n e  and engine technology was used 

when making comparisons between turbofan  and turboprop powered a i r p l a n e s  

f o r  t h e  1990's .  

been i d e n t i f i e d  t o  p r o j e c t  c u r r e n t  technology gas  turbine-powered a i r p l a n e s  

i n t o  t h e  next  decade. Both t h e  f u e l  burn r e s u l t s  and t h e  DOC r e s u l t s  show 

s u f f i c i e n t  improvement t o  warrent  continued e f f o r t s  on t h e  high-speed turbo- 

prop.  
program plans  r equ i r ed  t o  demonstrate t h e  component improvements t h a t  are 

needed. 

Great care was taken throughout 

The v a r i o u s  s t e p s ,  or  l e v e l s ,  o f  enabl ing  technology have 

NASA h a s  been suppl ied  wi th  the necessary  propuls ion  system technology 

The propuls ion  conf igu ra t ions  and performance r e s u l t s  of t h i s  s tudy  have 

not  y e t  been c r i t i c a l l y  reviewed by t h e  a i r f r ame  and t h e  a i r l i n e  indus t ry .  

General  Electr ic  recommends t h a t  NASA c o n t r a c t s  w i th  these  i n d u s t r i e s  t o  con- 

f i r m  these  r e s u l t s .  GE b e l i e v e s  t h a t  t h e  APET Cont rac t  e f f o r t  should be con- 

t i nued  wi th  t h e  o b j e c t i v e  of providing ano the r ,  and more d e t a i l e d ,  s tudy  of  

some of t he  c r i t i c a l  technology components. 

i d e n t i f i e d  withir .  t h i s  s t u d y ' s  recommendations s e c t i o n ,  r e q u i r e  commitment of 

major f i n a n c i a l  and developmental resources  t o  accomplish the  o b j e c t i v e  per-  

f ormance . 

These components, which have been 

The computer genera ted  engine performance decks and t h e  s c a l i n g  laws f o r  

propuls ion  weights and dimensions need e x e r c i s i n g  i n  a i r f rame s tudy  programs. 

These computer decks are f u l l y  descr ibed i n  Appendix 111. 

A i r c r a f t l e n g i n e  i n t e g r a t i o n  i s  a major problem f o r  any new propuls ion  

system and t h e  high-speed turbopropfan f a l l s  d i r e c t l y  i n t o  t h i s  ca tegory .  

S u b s t a n t i a l  Government r e sources  and programs are considered necessary  f o r  

t h e  eventua l  success fu l  development of t h e  a i r p l a n e  and matching propuls ion  

system. Apart  from t h e  b a s i c  aerodynamic development, r equ i r ed  through wind 

tunne l  t e s t  programs t o  ensure  a low-drag i n s t a l l a t i o n  a t  c r u i s e  speeds ,  

o t h e r  ae ro  programs are requi red .  Areas r e q u i r i n g  more work are low speed 
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handling, high lift configurations, engine out and other asymmetric flight 
conditions, basic stability and control derivatives, thrust-matching studies, 

nacelle placement studies, and more detailed investigations into acoustic and 
vibration environments. 

Finally, General Electric would welcome the opportunity to continue the 

APET investigations. 
efforts. 
recommended that the airframe companies should have the prime contracts and 

that propulsion companies should be subcontracted. In both areas, Government 

funding support with continued development efforts also occurring in parallel 
is recommended t o  make the full scale propfan a success. 

For propulsion prime areas we would propose solo 
For all subjects that require airframe/engine integration it is 

The advantages of counterrotating propfan systems must also be system- 

New technol- atically examined for both tractor and pusher configurations. 
ogies in gearboxes, pitch change mechanisms, exhaust system designs and con- 

trols techniques, should be pursued and integrated into practical nacelles 
and airplane configurations. 

should be considered. The APET study is supplying NASA and the airframe 
industry with a solid technical base, and future efforts are confidently 

expected to define the advanced propulsion systems required by a new subsonic 
generation of airplanes. 

Both military and commercial applications 
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I. 1 

hea t  

e x i t  

APPENDIX I 

INTRODUCTION 

Heat exchanger system los ses  include i n l e t  s p i l l a g e  drag ,  i n l e t  recovery,  

exchanger t o t a l  p ressure  l o s s ,  exhaust duct  t o t a l  p ressure  l o s s ,  nozzle  

v e l o c i t y  c o e f f i c i e n t ,  ex t e rna l  pod drag ,  and incremental  ex te rna l  drag 

due t o  nozzle d e f l e c t i o n .  The hea t  exchanger co re  t o t a l  p ressure  l o s s  was 

suppl ied  by the  Hughes-Treitler Manufacturing Corporation and has been used 

exc lus ive ly .  

1.2 BASIC DRAG AND LOSS ELEMENTS 

Exhaust duct t o t a l  p ressure  loss has been ca l cu la t ed  using duct  condi- 

t i o n s  a t  the  hea t  exchanger e x i t  and t h e  duct  geometry i n  a pressure  l o s s  com- 

puter  program. Tota l  p ressure  losses  va r i ed  from 0.126% APT/PT a t  takeoff  

condi t ions  t o  1.111% APTIPT a t  c ru i se  condi t ions .  

def ined f o r  the  engi-ne cycle  deck. 

An appropr ia te  model was 

The hea t  exchanger bas i c  ex te rna l  drag includes t h r e e  items: pod pres- 

s u r e  drag,  pod s idewal l  f r i c t i o n  drag and corner  l o s ses .  

e x t e r n a l  f r i c t i o n  drag i s  assumed equal t o  t h a t  p a r t  of the  engine nace l l e  

covered by the  pod and the re fo re  i s  included i n  the  engine nace l l e  e x t e r n a l  

drag . )  

pod pressure  drag. Sidewall  a r e a s  amounted t o  11% of the  t o t a l  pod wetted 

area and, t he re fo re ,  11% of the  t o t a l  f r i c t i o n  drag; and corner  l o s s e s  were 

assumed t o  be equal t o  5% of the  t o t a l  f r i c t i o n  drag. Therefore ,  the  e x t e r n a l  

pod drag w a s  assumed equiva len t  to 36% of the ex te rna l  pod f r i c t i o n  drag. The 

ex te rna l  f r i c t i o n  drag was computed using the  p r o p e l l e r  hub d ischarge  flow con- 

d i t i o n s  and the  incompressible f r i c t i o n  c o e f f i c i e n t ,  C f i  = 0.455/( logio Re)2*58, 

and t h e  r a t i o  of compressible t o  incompressible f r i c t i o n  c o e f f i c i e n t s ,  

(The pod bottom 

A value of 20% of the t o t a l  f r i c t i o n  drag w a s  used t o  approximate the  

-0.467 
= (1 +&M2) 

2 1  C /C 
fcomp fincomp 
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The r e s u l t s  of the c a l c u l a t i o n s  gave an e x t e r n a l  drag c o e f f i c i e n t ,  CD, of 
0.012 based on a f r o n t a l  a r e a  of 294 in .2 .  

t h e  CD va lues  of similar bodies contained i n  Reference 26 (Hoerner) when the  

t o t a l  f r i c t i o n  drag i s  included. 

expression f o r  the bas ic  pod drag was D = 2.4696 P&. 

This  CD appears c o n s i s t e n t  with 

Based on t h i s  CD and r e fe rence  a r e a ,  t h e  

1.3 VARIABLE GEOMETRY EXHAUST NOZZLE 

A t  f l i g h t  condi t ions o t h e r  than c r u i s e ,  the  nozzle a r e a  must be increased  

t o  meet the  requirements of t he  h e a t  exchanger wi th  the  maximum a r e a  being 

required a t  takeoff condi t ions .  The e x i t  a r e a  i s  increased by r o t a t i n g  the  

duct  ou te r  w a l l  ou t  i n t o  the  ex te rna l  flow thereby inc reas ing  t h e  drag.  The 

opened nozzle  w i l l  appear as a ramp but  a t  a l a r g e r  angle ,  approximately 19' 

ins tead  of 5.25', with r e spec t  t o  the  l o c a l  flow f i e l d .  

d i f f e rence  i n  angles by assuming a l i n e a r  r e l a t i o n  between CD and the  ramp 

angle  g ives  a CD of 0.064. 

due t o  nozzle de f l ec t ion  were assumed t o  vary with nozzle  e x i t  a r e a  by t h e  

Adjusting f o r  t h i s  

Both t h e  CD va lue  and the  a d d i t i o n a l  f r o n t a l  a r e a  

r a t i o  of (Aexit - & x i t  min)/Aexit m x  - 4 x i t  min). This  gave the  following 

expression f o r  the  drag due t o  nozzle  d e f l e c t i o n  

Aexit - Aexit min 
Aexit max - Aexit min 

D = 2.4927 P M'( 
0 

The nozzle e x i t  v e l o c i t y  c o e f f i c i e n t ,  CV, w a s  es t imated using empir ica l  d a t a  

which accounts for nozzle perimeter e f f e c t s  f o r  high aspect  r a t i o ,  2-D nozzles .  

A t  t he  c r u i s e  condi t ion,  t he  nozzle  hydrau l i c  diameter r a t i o  i s  approximately 

0.2. For t h i s  condi t ion and an assumed CV va lue  of 0.99 f o r  a s tandard  round 

nozzle ,  the CV of the  hea t  exchanger nozzle was ca l cu la t ed  t o  be 0.98. For 

t h i s  appl ica t ion ,  l i t t l e  change i n  CV should be expected wi th  nozzle  def lec-  

t i o n  t o  the takeoff pos i t i on .  

range of operat ing condi t ions  (nozzle  pressure  r a t i o s  of 1.04 t o  1.57 and 

geometry v a r i a t i o n s  of the  hea t  exchanger exhaust system). The nozzle  e x i t  

flow c o e f f i c i e n t ,  CF, was t o  be a cons tan t  va lue  of 0.98 over t he  ope ra t ing  
range. 

This va lue  of CV was assumed cons tan t  over the  
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1.4 APET HEAT EXCHANGER LOSS MODEL 

Station Diagram 

Heat Exchanger 

/ Core I Variab 

Free 
Stream 

Area 

"D( 

Force Diagram - DFrict , - DAfterbody 

le 

1.4.1 External Elements 

0 

0 

D s p i l l  -. Spillage Drag; Inlet Design, Airflow Requirements 

DFriction - Friction due to Additional Wetted Area 

0 DAfterbody - Afterbody Drag due to Variable Area Nozzle 
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1.4.2 In t e rna l  Elements 

0 

F i n l e t  - Prop Discharge Veloci ty  and Airflow Required f o r  Cooling 

FExit - APT1, I n l e t  D i f fuse r  Pressure  Loss 

APT2, Heat Exchanger Core Pressure  Loss 

AT, Temperature R i s e  Across Heat Exchanger 

APT3, Exhaust System Pressure  Loss, F r i c t i o n  and Turning 

1.5 INTERNAL LOSS CALCULATION PROCEDURE 

The h e a t  exchanger core  i s  a t  t h e  h e a r t  of t he  i n t e r n a l  l o s s  c a l c u l a t i o n .  

It is  e s s e n t i a l  to know the  pressure  loss and hea t  t r a n s f e r  c h a r a c t e r i s t i c s  of 

t h e  hea t  exchanger core  i n  order  t o  a s s e s s  the  h e a t  exchanger system perform- 

ance. Therefore,  i n  o rde r  to  e s t a b l i s h  a c r e d i b l e  design GE submitted t h e  

M E T  h e a t  exchanger requirements t o  Hughes-Treit ler Manufacturing Corporat ion,  

an a i r c r a f t  heat  exchanger manufacturer and Hughes-Treitler provided the  pre- 

l iminary  design of t he  APET hea t  exchanger used i n  n a c e l l e  design and ana lyses .  

GE has the in-house c a p a b i l i t y  t o  design and analyze the  duc t ing  t o  and 

from the  hea t  exchanger core .  

by GE t o  m e e t  s p e c i f i c  APET requirements.  

core  d a t a  was general ized ( t o  account f o r  small changes i n  the  APET engine 

t h a t  occurred f r o m  t h e  t i m e  the  s p e c i f i c a t i o n  was i ssued)  and used i n  conjunc- 

t i o n  with the  GE duct  a n a l y s i s .  

The M E T  h e a t  exchanger duct ing was designed 

The Hughes-Treitler h e a t  exchanger 

The r e s u l t i n g  genera l ized  hea t  exchanger core  d a t a  are shown i n  Figure 

Note tha t  t he  Q (= P/Po) i n  Table 1-1 i s  based on a core  face  d e n s i t y  1-1. 

r a t h e r  than the average dens i ty  through the  core as s t a t e d  i n  the  Hughes- 

T r e i t l e r  repor t .  This change was made t o  s impl i fy  c a l c u l a t i o n  procedure. 

For a general ized assessment of the  h e a t  exchanger system i n t e r n a l  drag ,  . 

t h e  system can be viewed as a "black box". 

momentum (Ram drag = w/g V) ; an i n t e r n a l  l o s s  (p re s su re  drop) ;  h e a t  a d d i t i o n  

The "black box" has  an en te r ing  

lAPET horsepower, gearbox e f f i c i e n c y ,  f l i g h t  condi t ion  r e l a t i o n s h i p s  a r e  
given i n  Figure 1-5 and Table 1-1. 
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Table 1-1. Typical APET Turboprop Fl ight  Path.  

Case 

SLS 

SL/TO 

DEN/TO 

C 1  imb 
C 1  imb 

C 1  imb 

C 1  imb 

EOC 

CR. 100% 

CR. 90% 

CR. 80% 

CR. 70% 

M/h ( f t )  

o/o 
0.20/0 

0.20/5330 

0.40/5K 
0.50/10K 

0.60/ 20K 

0.80/30K 

0.80/35K 

0.80/35K 

0.80/35K 

0.80/35K 

0.80/35K 

Engine, Propel ler ,  qT 
12378 

12510 

9850 

10986 

104449 

8966 

7676 

6550.5 

6550.5 

5895 
5 240 

4585 

12  249 

12385 

9743 

10874 

10339 

8863 

7579 

645 7 

6457 

5804 

5151 

4498 

SLS = Sea Level S t a t i c  
SL/TCF = Sea Level Takeoff 
DEN/TO = Denver Takeoff 
EOC = End of C l i m b  
CR = Cruise 

Gearbox, 
11 

0.9901 

0.9900 

0.9891 

0.9898 

0.9894 

0.9885 

0.9874 

0.9857 
0.9857 

0.9845 

0.9830 

0.9810 



and a r e s u l t i n g  e x i t  momentum. 

momentum i s  the  n e t  force  ( t h r u s t  o r  drag) .  The hea t  add i t ion  i s  s e t  by the  

gearbox horsepower and e f f i c i ency .1  The hea t  exchanger core  AT (Figure 1-11 
determines the  a i r f low requirements:  

The d i f f e rence  between en te r ing  and e x i t  

Cp (Tto  - T t i n )  = Q = W Cp AT 

(Note: 

i n  t h i s  ana lys i s .  

a d d i t i o n  occurs  a r e  so low t h a t  t h i s  pressure  l o s s  i s  n e g l i g i b l e ) .  

the  hea t  exchanger core  AT, a "heat exchanger i n t e r n a l  drag map" can be gener- 

a t ed  as shown i n  Figure 2-2. An example of how t h i s  map i s  generated i s  given 

below. 

The fundamental p ressure  lo s s  r e s u l t i n g  from h e a t  a d d i t i o n  i s  ignored 

The Mach numbers and temperature r a t i o s  a t  which the  h e a t  

Knowing 

End of Climb, Mo = 0.8, h = 35,000 f t . ,  + 18' Day, Fnet = 3999 1b. 

- Amb Heat Exchanger I n l e t  
T = 411.85 M = 0.8406 

P = 3.458 P t  = 5.495 

Mo = 0.8 T t  = 471.7 

Engine Shaf t  Output 6543.92 

Gearbox Ef f i c i ency ,  rl = 0.986 

Power Rejected 91.604 HP 

Heat Reject ion = 91.604 HP 42.42 

APET 
DESIGN 

BTU/MIN - 1 
HP 60 SEC/MIN 

= 64.764 BTU/SEC 

Heat Exchanger AT, Figure 1, 187' 

64.764 = 1.443 l b / s e c  0.24(187) 
Airflow Required = 

NOTE: Airflow is  set using a var i ab le  exi t  area. I n l e t  momentum i s  equal  
t o  W/g> x v. 
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Figure 1-2 .  Heat Exchanger Internal  Drag. 
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Conventionally,  t h e  former expression i s  used f o r  i n l e t  momentum calcu- 

l a t i o n  and the l a t t e r  used f o r  e x i t  momentum ( t h r u s t ) .  The t h r u s t  func t ion  

(F/W f i )  may be more informative i n  t h a t  i t  d i r e c t l y  r e l a t e s  fo rce ,  flow, 
temperature and pressure .  

I n l e t  Momentum ( F w )  

= 1*443 49.01 4- (0.8406) FRAEf 32.174 

FRAM 37.5 

o r  

l b Y  P y - 1.4 

0.285714 
= 1.1994 

3.458 

F = (1.1944) 1.443 

. F w  37.5 
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To generate the hea t  exchanger i n t e r n a l  drag map Apt is  var ied  from 

AP = 0 t o  t h e  APT t h a t  g ives  PT e x i t  = P&,.,b. 
pure hea t  addi t ion ,  zero Pressure  Loss 

Apt = 2.037 lb/in.2 (P t  e x i t  = Pamb) 

or  t u rns  90' from th rus t /d rag  d i r e c t i o n  

APT = 0 i s  t h e  ideal s i t u a t i o n ,  

Worst poss ib l e  case ,  flow d isappears ,  

1.589 

1.430 

1.271 

1.112 

1 .o 

For AP = 0 The e x i t  momentum exceeds the i n l e t  momentum due t o  the temperature 

1.199 43.53 

1.062 38.55 

0.877 31.83 

0.590 21.40 

0 0 

F e x i t  = (1.1994) 1.443 

F e x i t  = 43.53 

Net force  (drag p o s i t i v e )  = 

N e t  fo rce  = -6.92. l b ,  

F I n l e t  - FExit 37.5 - 43.53 

-6.03 = -0.15% (Thrust)  Eng. N e t  Thrust  
3999 

For AP = ( P t  e x i t  = Pamb) There i s  no e x i t  momentum 

N e t  fo rce  = 37.5 - 0 = 37.5/3999 = + 0.94% (Drag) Eng. N e t  Thrust  

Using the  parameter, APtlPt and a nozzle c o e f f i c i e n t  of 0.98, t he  0.8/35 

Climb curve on Figure 1-3 can be generated. 

APt /P t  x 

0 

10 

20 

30 

37.07 

P t  e x i t  

5.495 

4.945 

4.396 

3.847 

3.458 

P t e x i t  F 1 1 F e x i t  Pamb 

- 6.03 

- 1.05 

+ 5.67 

+16.10 

+37.5 

Fin - Fex % 
Fn 

- 0.151 

- 0.26 

+ 0.143 

+ 0.403 

+ 0.938 

These points, along with curves fo r  Denver T/O, 0.5/10K C l i m b ,  0.7/25K 

are shown i n  Figure 1-3. 
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I n l e t  and Dif fuser  
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n 

P t / P t  x Source 

5 . 0  GE 

0 . 9 3  Hughes-Trietler 

1 .16 . GE 

7.09 Total 
1 

.5/10K f / 

Line 

x MET Internal 
Drag 

Figure 1-3. Heat Exchanger Internal  Drag. 

Estimates for the actual  internal ducting (0.8/35K/End o f  Climb) are g iven 

below: 
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Typical t o t a l  System Losses: 

Ft Condition 

DEN T/O 

0.5/10K Climb 

0.7/25K Climb 

0.8/35K End of Climb 

System I n t e r n a l  System I n t e r n a l  
APt/Pt % Drag X Fn 

6.01 0.32 

6.20 0.08 

5.60 -0.02 

7.10 -0.08 

These po in t s  are  shown i n  Figure 1-3. 

External Loss Calcu la t ion  

Externa l  losses  a r e  a s t rong  func t ion  of t he  l o c a t i o n  and geometry of 

the  hea t  exchanger. Calcu la t ion  procedures f o r  ex te rna l  l o s s e s  a r e  s t r a i g h t  

forward. This sec t ion  w i l l  coord ina te  t h e  e x t e r n a l  and i n t e r n a l  drags.  

For a w e l l  designed sys tem,  s p i l l a g e  drag can be el iminated w i t h i n  the  

normal hea t  exchanger opera t ing  range. 

high Mach operat ing condi t ions  but  t h i s  i s  considered n e g l i g i b l e .  

Some wave drag  may be p re sen t  a t  t he  

Pod drag and af terbody d rag  a r e  ca l cu la t ed  as follows: 

Y 2 D 0 - P  M C A pod 2 o D r e f  

where 

Po = ambient pressure  

M = hub average Mach number 

CD = 0.012 

hef = 294 i n .2  ( f r o n t a l  a r e a )  
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1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

13222 

8795 

5484 

3999 

2 2 A3 - %in = 3.077 Po M 
Dnoz bmax  A3min 

2.88 0.22 3.59 0.027 

7.20 0.082 2.12 0.24 

7.32 0.133 0.196 0.004 

6.04 0.151 0.039 0 

where 

Po = ambient pressure 

0.024 

0.004 

M = hub average Mach number 

A3 = nozzle e x i t  a r e a  fo r  nozzle pos i t i on  

0.08 0.186 

-0.02 0.117 

, A3min minimum nozzle area 

0 

A3max maximum nozzle a r e a  

-0.08 0.071 

External drag l e v e l s  a r e  ca l cu la t ed  for  t he  same cases  used as examples for  

e x t e r n a l  l o s s  ca l cu la t ion .  

Case 

Denv T/O 

0.5/10K/CL 

0.7/25K/CL 

0.8/35K/CL 

Pod Drag ’ 0 lb / in .*  I M I Fn-lb I l b  X Fn 

12 .oo 
10.11 

5.45 

3.46 

0.3117 

0.537 

0.737 

0.841 

Summary of System Performance 

Summary of System Performance 

Case 

Denv T/O 

O.S/ lOK/CL 

0.7/25K/CL 

Pod 
Drag 

0.022 

0.082 

0.133 

X Fn 
Afterbody I n t e r n a l  Tota l  

Drag I Drag 

0.027 0.369 
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For compressor purposes, the t o t a l  system drag can be p lot ted  on the 

internal drag map as shown i n  Figure 1-4. 

about 0.2% or  l e s s  throughout most of the f l i g h t  p r o f i l e .  

The t o t a l  heat exchanger drag i s  

1.0 

.5 

M 
b 
0 

Y 
m 

c 
CI 

e 

.5 

R a m  Dran .5/1OK 

20 30 

System A p t l p t  - X x APET Internal 

0 T o t a l  Hx Drag 

Drag 

Figure 1-4. Heat Exchanger Internal Drag. 
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Figure 1 - 5 .  APET Horsepower/Gearbox E f f i c i e n c y .  
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ACOUSTICS 

Thrust  
Fn/ 6 
( l b s . )  

13448 

10718 

13948 

3479 

11.1 METHODOLOGY AND ASSUMPTIONS 

Fan 
r Pm A l t .  
N l / &  ( f t . )  

4859 2700 

4448 2405 

4859 900 

2928 394 

L I . 1 . 1  A i r c r a f t  F l i g h t  Condi t ions 

Three uniquely powered a i c r a f t  were a c o u s t i c a l l y  evaluated i n  t h i s  s tudy:  

S i d e l i n e  
( f t . )  

0 

0 

1476 

0 

1. Reference turbofan  powered 

2. 

3. 

0.8 Mach c r u i s e  turboprop powered 

0.7 Mach c r u i s e  turboprop powered 

Ground 
Speed. 

( f t / s e c )  

226 

226 

2 26 

218 

Tables  11 .1-1A t o  1 1 . 1 - 1 C  l i s t  the f l i g h t  cond i t ions  a t  which t h e s e  a i r c r a f t  

were s tud ied .  A l l  a i r c r a f t  had two wing mounted engines .  

Table 11 .1-1A.  Reference Turbofan F l i g h t  Condi t ions T W  = 111970 l b s .  

A/P 
Climb 
Ang. 
(Deg) Cond . 

~ 

Nacel le  
P i t c h  
Ang. 
(Deg) 

9 .3  

6.0 

9.3 

-3 

19.3 

16 

19.3 

7 

A/ P 
Climb 
Ang . 
(Deg) 

Nacel le  
P i t c h  
Ang . 
(Deg) 

Table 1 1 . 1 - 1 B .  0.8 Mach Cru i se  Turboprop F l i g h t  Condi t ions TOW = 111714 l b s .  

Side 1 i n e  
( f t . )  

0 

0 

1476 

0 

I I Thrust 1 Fan 1 Ground 
Speed 

( f t / s e c )  

226 

226 

226 

218 

14887 

2170 

8.5 

6 .3  

8.5 

-3 

SL 

AP 

18.5 

16 .3  

18.5 

7.0 

14887 

39 31 

----r-- 

1216 900 

1216 394 



Table 1 1 . 1 - 1 C .  0.7 Mach Cruise  Turboprop F l i g h t  Conditions TOGW = 107309 lbs .  

A l t .  
Cond . 

A/ P Nacelle 
Ground Climb P i t c h  

( f t . )  ( f t / s e c )  (Deg) (Des) 
S i d e l i n e  Speed Ang. Ang. 

TO 

CB 

SL 
AP 

14016 

10887 

14016 

3701 

1253 2466 0 226 8.5 18.5 

1253 2170 0 226 6.3 16.3 

1253 900 1476 2 26 8.5 18.5 

1253 394 0 21 8 -3 7 .O 

11.1.2 P rope l l e r  Noise 

Fan f i e l d  p r o p e l l e r  generated noise  w a s  p red ic ted  using a prel iminary 

des ign  procedure methodology based on Reference 44 and DeHaviland Twin Otter 

d a t a  presented i n  Reference 45. 

based on the  SAE procedures discussed i n  Reference 1: 

This  methodology computes a sca led  OASPL 

OASPL = (37.5 * Mt) + 15.8 log  ( S H P )  - 20 log (NB) - 20 log (DI) 

-20 log (DIS/500) + 43 + DI (1)  

where: OASPL = Overal l  Sound Pressure  Level f o r  one p r o p e l l e r  i n  f a r  f i e l d  

M t  = Tip Mach No. 

SHP = Shaf t  Horse Power 

NB = Number of Blades 

D t  = Tip Diameter 

DIS = Measurement Distance 

D I  = SAE D i r e c t i v i t y  Index 

From t h i s  OASPL, the  t o t a l  spectrum i s  determined using a c o r r e l a t i o n  of 

t he  harmonic f a l l -o f f  rates vs.  He l i ca l  Mach number developed from the  

DeHavilland data,  Reference 45. 

Broadband no i se  is then computed based on an empir ical  r e l a t i o n s h i p  

discussed i n  Reference 46: 
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CL DIS 
0.4 300 + 20 log  -. - 20 log  - ( 2 )  

( 3 )  

Where : SPLPeak = Peak Sound Pressure Level 

Ab = Blade Area 

Vo.7 = Veloci ty  a t  .7 rad ius  . 

CL = L i f t  Coef f ic ien t  

DIS = Evaluat ion Distance 

fpeak = Peak Amplitude Frequency 

St  = Strouhal  Number 

h = Projected Blade Thickness 

Af te r  the  peak frequency and'amplitude are determined the  o the r  s p e c t r a l  

l e v e l s  are defined by a prescr ibed spectrum and the  d i r e c t i v i t y  i s  assumed t o  

be uniform on a constant  r ad ius  arc .  

Calcu la t ions  performed us ing  t h i s  procedure y i e l d  lower l e v e l s  than the  

s tandard SAE procedure, Reference 44.' This  reduct ion  can be a t t r i b u t e d  t o  the  

"clean-up" t h a t  i s  achieved by the  DeHavilland p rope l l e r  i n  f l i g h t .  

Pro jec t ions  of comparative measurements of advanced blade design impact 

no noise  l e v e l s  made on NASA's J e t s t a r  (Reference 47) suggest  t h a t ,  a t  t he  

t i p  r e l t a i v e  Mach number region of i n t e r e s t ,  very l i t t l e ,  i f  any, b e n e f i t  

of advanced blade technology can be claimed ( t h e  h e l i c a l  Mach numbers a r e  

1 0 W  Mh = 0.75J. 

Near f i e l d  p r o p e l l e r  generated noise  w a s  p red ic ted  based on the  SAE 

methodologies of Reference 44, as follows: 
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OASPL = 15.2 log ( S H P )  - 40 log (DI) + 20 log  (4/NB) + 
10 N log (Y/Dt/.03) + 135.7 

Where : OASPL = Nearf ie ld  Overall Sound Pressure  Level f o r  one p rope l l e r  

SHP = Shaf t  Horse Power 

D I  = Tip Diameter, f t .  

NB = No. of Blades 

N 2.6 x M t  - 3.52 

Y = Prope l l e r  Tip  Clearance t o  Fuselage 

Discre te  tone harmonic f a l l -o f f  r a t e s  are prescr ibed  by a f a l l -o f f  r a t e  

c o r r e l a t i o n  developed from t h e  d a t a  of Reference 45 and 48. 

were summed in to  one t h i r d  octaves,  and then A-weighted sound l e v e l  (dBA). 

These tona l  l e v e l s  

11.1.3 Compressor/Fan Noise 

Compressor no i se  f o r  the  turboprop cases  and f an  i n l e t / d i s c h a r g e  no i se  . 

f o r  the  turbofan case were predic ted  using the  methodology d iscussed  i n  

Reference 49. 

NASA ANOPP, determines one-third octave band sound pressure  l e v e l s  of broad- 

band, d i s c r e t e  tone and combination-tone noise  components. 

This method, which was developed by NASA i n  p a r t i a l  support  of 

Broadband l e v e l s  are c o r r e l a t e d  based on t h e  following expression:  

Where : LB = Broadband Sound Pressure  Level 

AT = Tota l  temperature rise across  f an  or compressor 

ATo = 

M 

&, = re ference  value of M ( 1  lbm/sec) 

Reference value of AT (1R) 

mass flow r a t e  passing through fan  or compressor 
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1 
P 
II 
I 

e 
Flg (Mtr, Mtro) 5 Broadband Correction Function based on rotor tip 

relative Mach number and design rotor tip relative Mach number. 

FZB (RSS) = Broadband rotor-stator spacing correlation function 

F35 ( 0 )  = Broadband Directivity Correlation function 

F ~ B  ( f ,  fb) = Broadband spectra distribution correlation function 

Discrete tone noise levels are correlated based on the. following expres- 

sion: 

Where: Lt = Discrete tone sound pressure level 

Flt (Mtr,Mtrd) Tonal rotor tip relative Mach number 
correlation function 

F2, (RSS) = Tonal rotor - stator spacing correlation function 
F3t ( 0 )  = Tonal Directivity correlation function 

F4t (f/fb) = Harmonic tone level correlation function 

Combination tone noise, as calculated for first stage fans, are 

correlated by: 

f M 
+ F1c (Mtr) + F2c ( 0 )  + F3c - AT 

AT0 M, fb 
Lc = 20 log - + 10 log - 

Where:. L, * Combination tone sound pressure level 

F1, (Mtr) = Combination tone rotor tip relative Mach number 
correlation function 

F2, ( 0 )  = Combination tone directivley correlation function 

F3, (f/fb) = Combination tone spectrum correlation function 

C = Inlet guide vane correlation factor 

F1, F2, F3 and F4 are correlation functions which were curve fit from 

plots in Reference 49. 
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Comparisons of estimated 

engine measured da ta  show the  

measured data .  

l e v e l s  using these  procedures t o  commercial I 
8 methodology t o  be i n  good agreement with the  

11.1.4 Turbine Noise 

Turbine noise  i s  predic ted  using t h e  techniques d iscussed  i n  Reference 50. 

This  methodology was based on r i g  and engine d a t a  c o r r e l a t i o n s  t o  pressure  

r a t i o ,  t i p  speed, and ex i t  a rea .  

of broadband and tone no i se ,  i s  determined by: 

The peak OASPL, which i s  the  composite 

PEAK OASPL = 40 l og lo  ( A T / T ~ ~ ~ ~ ~ ~ ~  1 - 20 log10 U t  
+ 10 log lo  A + 164. 

Where : PEAK OASPL = combined broadband and d i s c r e t e  frequency 

OASPL a t  120' and 200 f t .  

Pr = tu rb ine  t o t a l - t o - s t a t i c  pressure  r a t i o  

= Pto/Ps2 

U = dominant s t age  t i p  speedp, f t / s e c .  

A' = core nozzle e x i t  a r ea ,  f t  

Y = r a t i o  of s p e c i f i c  h e a t s  1.4 

Where: PEAK SPL = tone SPL a t  120' and 200 f t .  s i d e l i n e ,  without a i r  
a t t enua t ion  and EGA 

The dominant s t age  was assumed t o  be the  next t o  l as t  s t age  f o r  the  two 

configurat ions and the  re ference  engine.  

Broadband no i se  w a s  determined by loga r i thmica l ly  s u b t r a c t i n g  tone 

l e v e l s  from the o v e r a l l  l e v e l s ,  and d i s t r i b u t i n g  the  r e s u l t a n t  l e v e l s  over a 

prescr ibed  spec t ra .  
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11.1.5 Combustor Noise 

The combustor generated noise  p red ic t ion  methodology was based on Refer- 

ence 51. This methodology c o r r e l a t e s  combustor no ise  with combustor mass 

flow r a t e ,  i n l e t  t o t a l  p ressure ,  t o t a l  temperature r i s e ,  and takeoff  condi- 

t i o n  t o t a l  temperature ex t r ac t ion .  The OAPWL i s  ca l cu la t ed  by: 

OAPWL = Overall Power Level 

Where: M 3  = combustor mass flow r a t e ,  kg/s 

P3 = combustor i n l e t  t o t a l  p ressure ,  Pa 

!T4 - T?) = cmhustnr t n t d  tern-pereture rise, O 1. 

(T4 - T5)ref = Mn. takeoff re ference  t o t a l  temperature 
ex t r ac t ion  by t h e  tu rb ines ,  k 

"ref r e fe rence  power,. 1 pW 

To = 288.15' k 

Po = 1.01325 x 105 Pa 

a, = 340.294 M/S 

This OAPWL d i s t r i b u t e d - o v e r  angle and over frequency using a f a r  f i e l d  

d i r e c t i v i t y  index and spectrum shape f ac to r s .  

11.1.6 Airframe Noise 

Noise, a s  generated by the  aerodynamic fo rces  on the  airf rame was pre- 

d i c t e d  using r e l a t i o n s h i p s  from Reference 52. 
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OASPL(r, e )  = 10 log  + 154.9 

Where: OASPL (r ,e)  = Overal l  Sound Pressure  Level a t  r a d i u s  r and angle 8 
re 2 x 10-5 N / M ~  

M = Aircraft .Mach Number 

CL = Life Coeff ic ien t  

p0 = Ambient d e n s i t y ,  kg/M3 

a, = Ambient speed of sound, M/Sec 

b = A i r c r a f t  Span, M 

I 
R 
E 

I 
fl 
d 

a 

v = Airc ra f t  Speed, M/Sec 

I 2 S = Airc ra f t  Wing Area, M 

y = Angle between the  normal t o  the  a i r c r a f t s  wings and the  observer ,  
degrees 

r = Observer d i s t ance ,  M 

AR = Aspect Rat io  

M, = Instantaneous Mach number i n  observer  d i r e c t i o n  

The OASPL as ca l cu la t ed  above i s  d i s t r i b u t e d  over a prescr ibed  spectrum 

shape. 

I 
I 
t 

11.1.7 Jet Noise 

The s ing le  stream je t  mixing noise  from t h e  shock f r e e  c i r c u l a r  exhaust 

nozzle w a s  predicted using the  procedure def ined i n  Reference 53. 

on a c o r r e l a t i o n  of f u l l y  expanded mean je t  v e l o c i t y ,  temperature r a t i o ,  

nozzle  area, and Strouhal  Number, with an ex tens ive  s c a l e  model database.  This 

procedure ca l cu la t e s  t h e  component OASPL from: 

It is  based 
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0 + 10 log12 (3) + 20 log  (e) 
PISA 

OASPL ss S + 10 log lo  (2) 
Where : OASPL = Overall Sound Pressure  Level a t  angle 8 ;  dB 

S = Normalized Overall  Sound Pressure  Level a t  Angle 8 ;  dB 

P j  = Ful ly  expanded j e t  dens i ty ,  Kg/M3 

Po Atmosphere dens i ty ,  Kg/M3 

= Variable  dens i ty  index 

A j  

r * Radial d i s t ance  from nozzle t o  observer ,  M 

Cross s e c t i o n a l  a rea  of jet  exhaust nozz le ,  M2 

Po Ambient pressure ,  P a  

PISA = Ambient pressure under ISA condi t ions ,  Pa 

0 j  = Angle r e l a t i v e  t o  in take  a x i s ,  degrees  

The OASPL i s  d i s t r i b u t e d  over a prescr ibed spec t r a ,  a n d  modified t o  

r e f l e c t  the  forward speed e f f e c t s  when pro jec ted  t o  f l i g h t .  

11.1.8 F l i g h t  Pro jec t ion  and Adjustments 

The procedure by which the  data  w a s  p ro jec ted  t o  f l i g h t  includes cor re la -  

t i o n s  f o r  such th ings  as spher ica l  divergence, a i r  a t t e n u a t i o n ,  ground r e f l ec -  

t i o n s ,  doppler  s h i f t i n g ,  dynamic e f f e c t s ,  j e t  no i se  f l i g h t  e f f e c t s ,  and e x t r a  

ground a t t enua t ion .  

Spherical  divergence w a s  ca lcu la ted  assuming a point  source and applying 

a "20 log" r a t i o  of d i s t a n c e s  cor rec t ion .  

A i r  a t t enua t ion  co r rec t ions  were determined based on ARP 866 (Reference 

54). 

The ground r e f l e c t i o n  cor rec t ion  r e l a t i o n s h i p s  are based on FAA r e p o r t  

RD-71-85 (Reference 55). 

The Dynamic amplitude e f f e c t  co r rec t ion  is  based on the  following: 

Dynamic Ef fec t  40 log 1 1 
1 - (Mac Cos 0 )  
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Where : Mac = A i r c r a f t  Mach Number 

8 = Lis t ene r  angle  

Jet noise  f l i g h t  e f f e c t s  are discussed i n  Reference 53.  Extra  ground 

a t t enua t ion  e f f e c t s  a r e  determined from Reference 56 .  

11.1.9 Cabin Noise 

Cabin noise  l e v e l s  were assessed at take  o f f  cond i t ion  (h ighes t  p r o p e l l e r  

source noise  condi t ion)  f o r  t he  two turboprop a i r c r a f t .  The only source t h a t  

was considered f o r  the  cabin no i se  w a s  near  f i e l d  p r o p e l l e r  no ise  (Reference 

Sec t ion  11.1.2). Af te r  the  near  f i e l d  p r o p e l l e r  source l e v e l s  were est imated 

a t  t h e  cabin wall, a cabin w a l l  t ransmission l o s s  was appl ied  t o  the  one-third 

octave l e v e l s  and a cabin environment A-weighted sound pressure  l e v e l  was 

determined. The cabin w a l l  t ransmission loss va lues  were est imated from 

Reference 57 and a r e  given i n  Table 11.1-2. 

Table 11.1-2. Cabin Wall Transmission Losses. 
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11.1.10 Treatment Assumptions 

The two turboprop engines studied d id  not  need any duct  acous t i c  treat- 

ments. 

exhaus t ,  and tu rb ine  t reatments .  

t o  be similar t o  those used i n  the  NASA/GE Energy E f f i c i e n t  Engine. 

The re ference  turbofan engine s tudied  did r equ i r e  fan i n l e t ,  f an  

The t rea tments  f o r  t h i s  engine a r e  assumed 

a 

As the  L/D f a c t o r s  of t he  reference engine ( I n l e t  L/D = .67, Fan Exhaust 

4.33) a r e  b e t t e r  than the  Energy E f f i c i e n t  Engine (Fan I n l e t  L/D = .52, 
a 

L/H 
Fan Exhaust L/H = 3.36) a conservat ive e s t ima t ion  was used by s u b s t i t u t i n g  

t h e  Energy E f f i c i e n t  Engine suppression es t imates  d i r e c t l y  ( r e fe rence  Tables 

11.1-3A and 11.1-3B). The ac tua l  suppressions used a r e  comprised of t he  

product of the  suppression l e v e l s  and the  appropr ia te  suppression d i r e c t i v i t y  

r a t i o s .  

... 

11.2 EVALUATION 

A l l  a i r c r a f t  were a c o u s t i c a l l y  evaluated i n  r e l a t i o n  t o  FAR36 1978 Stage 

I11 l i m i t s  (Reference 58).  

evaluated i n  r e l a t i o n  t o  a cabin  noise goa l  of 85 dBA. 

In  addi t ion ,  t h e  tw turboprop a i r c r a f t  were 

Table 11.2 l i s t  the  est imated l eve l s  of  a l l  t h r e e  a i r c r a f t ,  t h e  corre-  

sponding FAR36 l i m i t s ,  and t h e  l i m i t  margins a t  each of the  f l i g h t  condi t ions .  

The accuracy of those estimates a r e  obvi'ously l imi t ed  by the  prel iminary 

s t a t u s  of  the  design cyc le ,  t he  pred ic t ion  assumptions, and the  f l i g h t  mission 

ob jec t ives .  

11.2.1 Reference Turbofan 

The Reference turbofan engined a i r c r a f t  (Figure 11.2-1) will meet FAR36 

l i m i t s  using cutback. 

The sources  t h a t  a r e  con t ro l l i ng  t h e  system noise  l e v e l s  a t  takeoff  and 

cu t  back a r e  fan  i n l e t  and fan  exhaust, (Reference Table 11.2-1). 

design cons idera t ions  which would help improve FAR36 margin a re :  

Future  
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Table 11.1-3A. APET Reference Turbofan Treatment Suppressions - Takeoff,  S ide l ine ,  and Cut  Back. 

~~~ ~ 

Preq. (Ht) 

Pan Exhaust 

Pan I n l e t  

Turb ine 

Suppression Level (A dB) 

(315 400 500 630 800 1 K  1.25K 1.6K 2K 2.5K 3.511 

5.2 5.2 5.2 5.2 5.2 7.0 4.5 7.5 8.0 8.5 8.5 

0 1.2 5.2 6.0 4.9 7.0 6.1 6.5 0.0 7.0 5.1 

0 0 0 0 0 0.1 0.3 0.6 1.2 1.3 2.5 

y 
2.9 2.5 

Pan I n l e t  

- 
1OK 

15 .o 
4.6 

3.2 - 

Angle re I n l e t  

10' 20' 23' 40' 50' 60' 70' 80° 90' 

0.4 0.4 0.2 0.5 0.5 1.0 1.6 2.4 2.2 

Pan 
Exhaust 
Turbine 

Table 11.1-3B. APET Reference Turbofan Treatment Suppressions -. Approach. 

Angle re I n l e t  

80' 90' 100' 110' 120' 130' 140' 150' 

1.1 1.1 1.4 1.3 1.0 1.3 0.9 0.8 

1.6 1.16 1.59 1.48 1.14 0.89 0.63 0.41 

Preq. (a t )  
Pan Exhaust 

Pan I n l e t  

Turb ine 

Suppression Level (A dB) 

(400 500 630 800 1 K  1.25K 1.6K 2K 2.5K 3.15K 4K 5K 6.3K 8K 1OK 

7.1 7 .1  7.3 7.2 9.6 10.9 10.7 11.7 14.5 14.0 13.3 15.0 15.1 15.0 12.8 

1.0 3.1 4.1 5.3 5.6 7.5 7.7 5.8 6.5 6.2 7.2 7.2 7.3 6.5 4.4 

0 0 0 0 0.1 0.3 0.6 1.2 1.3 2.5 3.0 3.1 2.9 2.5 3.2 
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Pan I n l e t  

Angle re I n l e t  

LO' 20' 23' 40' 50' 60' 70' 80' 90' 

0.3 0.2 0.5 0.9 1.1 1.5 1.9 1.8 1.4 

Pan 
Exhaust 

Turbine 

Angle re I n l e t  

70' 80' 90' 100' 110' 120' 130' 140' 150' 

1.0 1.0 1.0 1.2 1.2 1.2 1.0 1.1 1.0 

1.48 1.59 1.16 1.59 1.48 1.14 0.89 0.63 0.41 



Bu Ik Absorber Treatment 
G l a r  Bulk Absorbent Treatment 

Figure 11.2-1.  APET Baseline Turbofan Engine. 

Table 11.2-1. Reference Turbofan Component Levels.  

Noise Source 

A i r  f r ame 

J e t  

Core 

Fan Exhaust 

Fan I n l e t  

Turbine 

Engine Alone 

System 

Full  
Power 

( EPNd B) 
~ 

--- 
80.5 

69.6 

75.0 

80.6 

71.0 
--- 

85.8 

Measuring Point 

Cutback 
( EPNd B) 

--- 
77.9 

67 .4  

75.7 

80 .9  

72.6 
--- 

85.3 

Side l ine  
(EPNdB) 

_-- 
84 .2  

73.2 

80.7 

87.3 

77.4 
--- 

91.8 

~ 

Approach 
(EPNdB) 

87.6 

72.5 

69.6 

80.9 

93 .O 
88 .1  

94.2 

94.9 

479 



0 Reduction i n  fan op ra t ing  speed a t  take  o f f  

0 Improved i n l e t  l i n e r  treatment 

0 Increased r o t o r - s t a t o r  spacing 

11.2.2 0.8 Mach Turboprop 

The 0.8 c ru i se  Mach turboprop engine (F igure  11.2-2) a i r c r a f t  w i l l  m e e t  

FAR36 limits using cutback. 

P rope l l e r  generated noise  c o n t r o l s  the  t o t a l  system noise  a t  a l l  f l i g h t  

condi t ions  (Reference Table 11.2-2). 

acosu t i c  bene f i t  which can be claimed could be  d i r e c t l y  appl ied  t o  the o v e r a l l  

system noise  due t o  the  dominance of p r o p e l l e r  no ise  i n  the  system noise .  

Any advanced p r o p e l l e r  b lade  design 

The maximum A-weighted cabin  noise  f o r  t h i s  a i r c r a f t  a t  takeoff  i s  85.8 

dBA. 

be within program goals .  

Therefore,  a n t i c i p a t e d  l e v e l s  during normal opera t ion  a r e  expected t o  

11.2.3 0.7 Mach Turboprop 

The 0.7 c ru i se  Mach turboprop engine ( a l s o  Figure 11.2-2) a i r c r a f t  w i l l  

meet FAR36 l i m i t s  using c u t  back. A s  i n  the 0.8 Mach c r u i s e  p r o p e l l e r  

generated noise  c o n t r o l s  the  t o t a l  sytem no i se  a t  a l l  f l i g h t  condi t ions  

(Reference Table 11.2-3). Therefore ,  any advanced p r o p e l l e r  blade acout ic  

b e n e f i t  i s  d i r e c t l y  r e a l i z a b l e  as a sys t em no i se  b e n e f i t .  

Maximum A-weighted cabin  noise  a t  takeoff  f o r  t h i s  a i r c r a f t  i s  est imated 

t o  85.8 dBA which i s  a t  t h e  program goals .  

11.3 Conclusions and Reconmendations 

A l l  t h r e e  a i r c r a f t  evaluated i n  t h i s  s tudy a r e  expected t o  meet FAR36 

Stage 111 l i m i t s  f o r  f a r  f i e l d  no i se ,  and program goals  f o r  near  f i e l d  noise .  

Growth of  the  turboprop a i r c r a f t  may be permit ted i f  advanced b lade  

technology can provide any b e n e f i t  a t  t he  low t i p  r e l a t i v e  Mach number a t  

which the  propel le r  is opera t ing  . 
There i s  not any s i g n i f i c a n t  acous t i c  b e n e f i t  o r  pena l ty  t h a t  t he  pro- 

p e l l e r  engines in  t h i s  s tudy have over t he  turbofan  engines .  
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12.57 Ft. Diameter for .9 Mach Configuration 
12.19 Ft. Diameter for . 7  Mach Configuration 

F u l l  
Power 

( EPNd B 

Figure 11.2-2. APET Engine No. 2B Boosted Turboprop, 

Cu t b  ac k 
(EPNdB) 

Table 11.2-2. 0.8 Mach Turboprop Component Levels .  

M e  as u t  ing  Po i n  t 

Noise Source 

Airframe 

Jet 

Core 

Compressor 

Pro pe 1 le  r 

Turbine 

Eng i n e  A 1  one 

Sys tern 

-- 
67.5 

75.1 

63.6 

89.3 

73.4 
--- 

90.5 

--- 
61.4 

72.8 

59.4 

87.6 

73.9 
--- 

88.9 

S i d e l i n e  
(EPNdB) 

Approach 
( EPNd B 

--- 
70.6 

77.9 

72.0 

91.9 

78.8 
--- 

93.5 

87.6 

57.1 

76 .O 

88.4 

90.5 

89.5 
97.2 

97.2 
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Table 11.2-3.  0 .7  Mach Turboprop Component Levels .  

Noise Source 

Airframe 

J e t  

Core 

Compr es so r 

Pr ope 1 l e  r 

Tur b ine 

Engine Alone 

System 

Ful l  
Power 

(EPNdB) 

-- 
67 .3  

74.8 

62.8 

89.1 

72.8 

-- 
90.2 

Measurinn Point 
~ 

Cutback 
( EPNd B) 

-- 
64.9 

72.5 

58.3 

87 .4  

73.3 

_- 
88.7 

Side 1 ine  
(EPNdB) 

-- 
70.4 

77.6 

71.1 

91.7 

78.2 

_- 
93.2 

Approach 
(EPNdB) 

8617 

56.9 

75.7 

87.5 

90 .4  

88.9 

96.7 

96.7 
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111.0 INTRODUCTION 

The APET customer deck includes a p rovis ion  f o r  s c a l i n g  f o r  re ference  

engine.  

of engine s i z e s .  To complement the  sca l ing  c a p a b i l i t y ,  t h i s  weight and 

dimensional model w i l l  provide weights and dimensions over a range of engine 

s i z e s .  

Thus, t h e  u s e r  can ca l cu la t e  engine system performance f o r  a range 

The model i s  divided i n t o  f i v e  components: 

0 Gas Generator 

0 Prope l l e r  

0 Gearbox 

0 Nacelle 

0 I n s t a l l a t i o n  

With t h i s  breakdown, t h e  user  can supply components with d i f f e r e n t  charac- 

ter is t ics  and determine weights and dimensions f o r  t he  new engine system. 

111.1 PREFACE 

This provides a method f o r  determining the  weights and dimensions fo r  

sca led  APET engines '  systems. The system inc ludes  the gas genera tor ,  gearbox, 

p r o p e l l e r ,  n a c e l l e ,  and i n s t a l l a t i o n .  The engine sca l ing  c a p a b i l i t y  (SWSIZE) 

i s  included i n  the  APET customer deck ' for  t he  range of gearbox horsepower 

(PWSD) from 7800 t o  20800. With the  GE gearbox e f f i c i e n c y  c h a r a c t e r i s t i c  

and customer o f f t akes ,  t h e  r e s u l t i n g  p rope l l e r  s h a f t  horse  power (PWI) i s  

-7500 t o  -20000. Weights and dimensional information can be ca l cu la t ed  f o r  

t he  following: 

0 Gas genera tor  configurat ions 

- A L L  axial  

- Axi c e n t r i f u g a l  

0 Prope l l e r  Design Range H-S Prop Fan -M0.80 Capab i l i t y  
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- M0.70 t o  M0.80 

- T i p  Speed from 700 t o  800 f p s  (UT11 

- SHP/D2 from 30 t o  37.5 (PWODS) 

0 Gearbox Types - GE Suppl ied 

- Offse t  

- S p l i t  

- Concentric 

111.2 PROCEDURE 

Weights (System wi th  O f f s e t  Gearbox) 

Determine the scale APET engine system’s weights  as follows: 

0 S e l e c t  t h e  d e s i r e  a i r f l o w  scale ‘SWSIZE = d e s i r e d  va lue  
(0.60 - <SWIZE<L. - 60) 

0 Choose c r u i s e  f l i g h t  c o n d i t i o n  - ALT = 35K, Mach No. = 0.70 t o  0.80 

. .  0 Choose t h e  p r o p e l l e r  des ign  

- Prope l l e r  S i z i n g  swi tch  ‘SWPROP 

- T i p  Speed ‘ZUTl 

- Prope l l e r  Loading -ZPWODS 

0 Operate s c a l e d  engine a t  MO.2O/SL+27, SITFK = 1, PC = 50 t o  f i n d  
gearbox des ign  horsepower (PWSD) 

With t h i s  information,  u se  F igures  111-1 through 111-6 t o  c a l c u l a t e  t he  weight 

f o r  t h e  sca l ed  APET engine system. 

111.3 WEIGHTS ( S p l i t  and Concent r ic  Gearbox) 

The procedure i s  t h e  same except  Reference Weights (WT) REF f o r  t h e  

d e s i r e d  gearbox type are found i n  Table  111-1. 

The weights  of the  d e s i r e d  gea r s  are then  c a l c u l a t e d  us ing  t h e  charac- 

t e r i s t i c s  o f  Figure 111-3. 

WT @ PWSD MO.PO/SL + 27 (WTlGears = (WT)Ref x 
WT @ PWSD = 13000, SHP/D2= Spec i f i ed  

WT @ PWSD MO.PO/SL + 27 
WT @ PWSD = 13000, SHP/D2= Spec i f i ed  

(WT)Nacelle = (WT)Ref x 
S t ruc tu re  
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1000 
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3000 

2600 

2200 

1800 

1400 

lo00 

600 

SHP/D~-PWZDS 

@ 30.0 

PIO. 80135K*l8 
mCL 

34.0 UT - 800 fps 

3 7 . 5  

6 8 10 12 14 16 18 20 22 
Gearbox Design Horsepower- RlSDllOOO 

@ !IO. 2OlSL + 27O 

F i g u r e  111-2. APET P r o p e l l e r  Weight Trends .  
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Figure 111-3. APET Gearbox Weight Trends. 
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Figure 111-4. APET Nacelle Weight Trends. 
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Figure  111-6. APET P r o p e l l e r  Loading Trends (Constant  R a t e d  
Temperature) . 
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Table 111-1. Gearbox Type Effects .  

PWSD = 13000 @ MO.PO/SL + 27' 

Gears Weights 
SHP/D~ @ 

M0.80/35K + 18 Offset S p l i t  

37.5 1068 1500 

34.0 1123 1577 

30 1184 1663 

Concentric 

1162 

12 22 

1288 
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37.5 56 7 66 0 

34 578 67 3 

30 594 69 1 

594 

606 

62 2 



111.4 RESULTS 

The resul ts  of 3 s c a l i n g  s i t u a t i o n s  a r e  contained i n  Tables 111-2 and 

Table 111-2 111-3. 

conta ins  the  input s e l e c t i o n s  t o  the  customer deck and Table 111-3 the  breakdown 

of  the  con t r ibu t ing  weights.  The examples i l l u s t r a t e s  these  s i t u a t i o n s .  

The re ference  engine i s  a l so  included f o r  comparison. 

Example Reference Engine System Example 
3 

SWSIZE 

Gas Generator 

Gearbox Type 

P r o p e l l e r  

SHP/D2 @ M0.80/35K 

Tip  Speed 

0 

A l l  Axial 

Offse t  

0.80 

H S 10 Blade Propfan 

37.5 37.5 

800 80 0 

Axi-Centrifugal 

Concentric 

34 30 

750 700 

The l i s t i n g  of the  APET customer deck input  i s  included a t  t h e  back of t h i s  s ec t ion .  

111.5 DIMENSIONS 

Engine dimensions can be ca lcu la ted  by using Figures  111-7 through 111-9 

along with these  sca l ing  r e l a t ionsh ips .  

G a s  Generator 
D i a  = (Dia)Ref * (SWSIZE)K1 

K2 

Gearbox 
K 3  M0.20/SL + 27 * PWSD 

13000 Dimension = (Dimension)Ref 

K3 = 0.50 
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Ex.rple Exmple E x r p l e  
Reference E q i n e  1 2 3 

Gaa Generator 
Propeller 

Gearbox Syatm 

Geer 
Reat Exchanger i Duct. 
Lube S y a t a  
O i l  Tank 
O i l  
Ai rc raf t  Qarbox 

Total 

Weight (Tip Speed) 

Caae 1 

Uech No. 

S ITFK 
PWX1 281 327 
SVSIZE 
Propeller 8.5. 10 B l d e  Propfen 

Conf iguret  ion 
Gearbox Offaet 
Gaa Generator A l l  Axial 

Reference Engine 

Figure Weighti 

1 1568 (All Axial) 

2 1479 
3 

1068 
102 
50 
31 
79 
50 
0 

1380 
- 

WDS* 
PWSD 

OT1 
Q 

Ine te l la t ioa  

Support Structure 
Engine Build Up 

Total 

37.5 - 
‘13000 

eb0 - 
7.65 - 

5 

lE4 
122 

306 
- 

Caae 1 Case 2 Caae 1 Caae 2 Caae 1 

0.80 0.20 0.80 0.20 0.75 
0 35000 

18 27 18 27 I8 
40 50 Lo 50 40 
1 1 1 1 1 

229.6 261.6 229.6 261.6 229.6 
0.80 0.80 0.80 0.60 0.80 

35000 0 35000 

137 
115 

252 
- 

Caae 2 

261.6 

155 
115 

270 
- 

I Offaet Offaet Concentric 
A l l  Axial I A l l  Axial I Axi Centrifugal 

I 

37.5 - 34.0 30 

*CValuca to  uae for Figuraa 1 through 5 

Table 111-3. APET Engine System Weights. 

E x r p l e  2 

1130 1230 

770 
81 
42 
27 
64 
41 
0 

1025 
- 

8 10 
81 
42 
27 
64 
41 

100 

1165 
- 

Ex-ple 3 

1340 

920 1 
81 
62 
27 
64 
41 

220 

1395 
- 

Nacelle Structure 
In l e t  
Core Ilorrle 

Weight (Tip Speed) 

Total 

567 

88 
0 

725 

m 

- 
47 5 

55 
75 
0 

605 
- 

125 
115 

U O  
- 

485 
55 
75 

7 

62 2 
- 

512 
55 
75 
20 

662 
- 

I I I I I I 
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Axi-Centrifugal Compressor 

- E3 Tech for Axial 

2 Stage VIGV Booster 

a 4 Stage Power Turbine 

a Offset Gearbox 

H-S Prop Fan 

- 310.8 Capability 

Figure 111-10. APET Turboprop Configuration. 

/ I  ‘+-Stage LPT 
a Referee Offset Gearbox 

Referee Nacelle (0.30 r/R) 
Single Scoop Inlet 

Figure 111-11. APET 2B Base l ine  Engine (12500 SHP). 
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SYMBOLS AND ABBREVIATIONS 

M - Mach Number 

TOGW - Takeoff Gross Weight 

OEI  - One Engine Inope ra t ive  

SHP - Shaft  Horsepower 

KEAS - Equivalent Airspeed i n  Knots 

ASM - Available Seat Miles 

PAX - Number of Passengers 

HP - High Pressure  

LP - Low Pressure  

SFC - Speci f ic  Fuel Consumption 

MXCL - Maximum Climb 

T/O - Takeoff 

PR - Pressure Rat io  

K - One Thousand 

TF - Turbofan 

TP - Turboprop 

SL - Sea Level 

FN - N e t  Thrust  

DOC - Direct Operating Cost 

LF - Load Fac tor  

N . M i  - Nautical M i l e  
o r  
NMI 

EPNdB - Effec t ive  Perceived Noise Level i n  Decibels 

kN - Kilo Newton 

kW - Kilowatt 

OWE - Operational Weight Empty 

ZFW - Zero Fuel  Weight 

OPR - Overall  Pressure  Rat io  

VIGV - Variable I n l e t  Guide Vanes 

MTDE - Modern Technology Development Engine 

T41 - Turbine Gas Temperature 

PCM - Pi tch  Change Mechanism 
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SYMBOLS AND ABBREVIATIONS (Concluded) 

PCMCU - Pitch Change Mechanism Control Unit 

PSI  - Pounds per Square Inch 

KSI - Thousand Pounds p e r  Square Inch 

SDG - Speed Decreasing Gearbox 

STC - Streamtube Curvature 

CL - Centerline 

FADEC - Full Authority Digital Engine Control 

501 



I 
I 
I 
8 
I 
8 .  

D I STR I B u T ION L I ST 

NASA Lewis Research Center 
21000 Brookpark Road 
Cleveland, OH 44135 -_ 

No. of Copies 

Attn: Report Control Office, MS 60-1 
Library, MS 60-3 7 
L. 3. Bober, MS 
L. C. Franciscus MS 6-12 1 
E. J. Graber, MS Rf;-7 1 
J. f. Groeneweg, MS 86-7 1 

E. T. Meleason, 
J. E. Rohde, MS 86-7 1 
0. A. Saqerser, MS 86-7 1 
G. K. Sievers, 
W. C. Strack, MS 6-12 1 
J. A. Ziemianski, MS R6i-7 1 

1 

G. A. Kraft, MS 86-7 25 

- -  

-- . -- 
MS 86-7 1 

r .  

MK !?A-7 1 

NASA Scientific and Technical Information Facility 
P. 0. Box 8757 
Baltimore Washington International Airport, MD 21240 

Attn: Accessioning Department 20 

NASA Headquarters 
Washington, DC 20546 

Attn: RJ/W. S. Aiken, Jr. 1 
RP/J. R. Facey 1 

NASA Ames Research Center 
Moffett Field, CA 94035 

Attn: 0. P. Bencze, MS 227-6 1 
R. C. Smith, MS 227-6 1 

NASA Dryden flight Research Center 
P. 0. Box 273 
Edwards, CA 93523 

Attn: R. S. Baron, MS D-FP 1 

503 



- -  
NASA iangley Research Center 
Hampton, VA 23665 

A t t n :  C. Driver, MS 249A 1 
R. W. Koenig, MS 249 1 
Research Information Center, blS* 151A . 1 

Air Force Aero Propulsion Lab 
Wright  Patterson AB, OH 45433 

A t t n :  H. F. Jones AFWAL/POSL 3 

Naval Air Systems Command 
Jefferson Plaza #1 
Arlington, VA 20360 

A t t n :  G. Derderian, AIR 310-E 3 
J. Klapper, AIR 532C-1 1 

Naval Air Propulsion Center 
P. 0. Box 7176 
Trenton, NJ 08628 

A t t n  : P. J. Mangione, M.S. PE-32 2 

A1 1 ison' Gas Turbine Operations 
General Motors Corporation 
P.O. Box 894 
Indianapolis, IN 46206-0894 

A t t n :  R. 0. Anderson, MS T-18 1 
A. S. Novick, MS T-18 6 
0. A. Waqner, MS T-18 1 

Beech Aircraft Corporation 
Wichita, KS 67201 

A t t n :  R.W. Awker 2 

Boei ng Comerci a1 Airplane Company 
P.O. Box 3707 
Seat t le ,  WA 98124 

A t t n :  

504 

G. P. Evelyn, MS 72-27 3 

I 
I 
1- 
I 
1 
I 

8 
I 
I 
8 
1 
1 
1 
I 
D- 
I 
I 
I 

m 



I 
E 
1 
1 
8 
1 -  

Boeing Military Airplane Company 
P. 0. Box 7730 
Wichita, KS 67277-7730 

2 
2 

At tn : D. Axelson, MS K77-24 
C. T. Havey, MS 75-76 -- 

Cessna Aircraft Company 
P. 0. Box 154 
Wichita, KS 67201 

Attn: Dave Ellis, Dept. 178 2 

Doug1 as Ai rcraf t Co 
3855 Lakewood Blvd. 
Long Beach, CA 90801 

Attn: R. F. Chapier, MS 3641 1 
S. S. Harutunian, MS 3641 1 

1 
1 

E. S. Johnson, PIS 3641 
1. C. Newton, PIS 3584 

The Garret Corporation 
One First National Plaza 
Suite 1900 
Dayton, OH 45402 

Attn: A. E. Hause 1 

General Electric Company 
Aircraft Engine Business Group 
1000 Western Avenue 
Lynn, MA 01905 

Attn: R. J. Willis, Jr., M.S. WL 345 2 

Grumman Aerospace Corporation 
Bethpage, NY 11714 

Attn: N. F. Dannenhoffer, M.S. C32-05 1 
C. Lehman, M.S. C42-05 1 
J. Karanik, ivl.5. C32 - US 1 

505 



- -  
Hamilton Standard Div., UTC 
Windsor Locks, CT 06096 

Attn: J. A. Baum, M.S. 1-2-11 1 
S. H. Cohen, M.S. 1-2-11 1 
B. S. Gatzen, M.S. 1-2-11 2 
M. G. Mayo, M.S. 1A-3-2 2 

Hartzell Propeller Products 
P. 0. Box 1458 
1800 Covington Avenue 
Piqua, OH 45356 

Attn: A. R. Disbrow 1 

Lockheed-California Company . 
P. 0. Box 551 
Burbank, CA 91503 

Attn : A. R. Yackle, Bldq. 90-1, Dept. 69-05 2 

Lockheed-Georgia Company 
86 South Cobb Drive 
Marietta, GA 30063 

W. E. Arncit, M.S. D/72-17, Zone 418 4 
1 

Attn: 
D. M. Winkeljohn, M.S. 0/72-79, Zone 419 

Pratt & Whitney Aircraft 
United Technologies Corporation 
Commercial Products Division 
400 Main Street 
East Hartford, CT 06108 

At tn : J. Godston, M.S. 118-26 1 
A. McKibben, M.S. 163-12 1 

N. Sandt, M.S. 118-27 1 
C. Reynolds, M.S. 118-26 6 

Pratt & Whitney Aircraft 
United Technologies Corporation 
Military Products Division 
P. 0. Box 2691 
West Palm Beach, R 33402 

1 
1 W .  King, M.S. 702-05 

1 S. Spoleer, M.S. 702-50 
H. 0. Stetson, M.S. 713-09 1 

Attn: L. Coons, M.S. 711-69 

H. 0. Snyder, Url.S. / 1 1  - 6/ 1 
506 

I 
I 
8 -  
I 
I 
8 
1 
I 
I 
I 
I 
I 
I 
I 
R 
1. 
I 
I 
D 



Sikorsky Aircraft 
Transmission Engineering 
North Main Street 
Stratford, CN 06601 

Attn: R. Stone, M.S. S-318A 3 

Williams International 
2280 West Maple Road 
P. 0. Box 200 
Walled Lake, MI 48088 

Attn: Edward Lays, M.S. 4-9 1 

Air Canada 
Dorval Base H4Y-1CZ 
Quebec, Canada 

Attn : Goeff Haigh - Zip 14 1 
B:H. Jones - Zip 66 1 

Air Transport Association 
1709 New York Avenue, NW 
Washington, DC 20006 

Attn: D. J. Collier . 1 

Delta Air Lines Inc. 
Hartsfield Atlanta International Airport 
Atlanta, GA 30320 

Attn: J.T. Davis, Enqineering Department 2 

Federal Express 

Memphis, TN 38194 
P. O.6OX 727-4021 

Attn : 6. M. Dotson, M.S. 4021 1 

Ozark Air Lines Inc. 
P. 0. Box 10007 
Lambert St. Louis Airport 
St. Louis, MU 63145 

Attn: Phil Rogers - Engineerinq Dept. 1 

507 



Trans World A i r l i n e s  Inc.  
605 Th i rd  Avenue 
New York, NY 10016 

At tn :  Engineerinq Dept. 2 

Uni ted A i r  L i n e i  
P. 0. Box 66100 
Chicago, I L  60666 

At tn :  Engineerinq Dept. 2 

Uni ted A i r  Lines 
San Francisco I n t e r n a t i o n a l  A i r p o r t  
San Francisco, CA 94128 

At tn :  Engineering Dept. 2 

508 


